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De�nition (p-cohomological dimension)

1. Let X be a scheme and p a prime number. We say that cdp(X ) ≤ N i� for all
p-torsion étale sheaf F and all integer i > N, we have:

Hi (Xét , F ) = 0.

Alexandre Grothendieck et al., SGA 4, exposé X by Michael Artin

2. Let G be a pro�nite group. We say that cdp(G) ≤ N i� for all discrete p-torsion
G -module M (with continuous action) we have, for all i > N, we have:

Hi (G ,M) = 0.

Jean-Pierre Serre, Cohomologie galoisienne.
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I If k is a �eld, (Spec(k))ét = BGk (where Gk = Gal(ksep/k)), so

cdp(Spec k) = cdp(Gk).

I Si X is an a�ne scheme of characteristic p > 0,

cdp(X ) ≤ 1.

It comes from the Artin-Schreier exact sequence

0→ Z/p → Ga
℘→ Ga → 0.

3/ 36



Examples

Reminder: a C1-�eld has p-cohomological dimension (for all prime number p) ≤ 1.

Theorem

1. A �nite �eld is C1. bZ Frobp
∼→ GFp so cd` Fp is exactly 1, for all prime number `.

2. If k is algebraically closed, k(t) is C1 (Tsen).

3. Let A be an henselian, excellent dvr with algebraically closed residue �eld. Then
Frac(A) is C1 (Lang).

Excellent: the extension Frac(bA)/Frac(A) is separable.
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Corollary (of Tsen's result)

Let K/k a �eld extension of transcendence degree N and p a prime number. Then,

cdp(K) ≤ N + cdp(k).

This is an equality if K/k is of �nite type, cdp(k) < +∞ and p · 1 ∈ k×.

Corollary (of Lang's result)

Let K be a complete discrete valuation �eld with perfect residue �eld k and p a prime
number. Then, we have:

cdp(K) ≤ 1 + cdp(k).

This is an equality if p · 1 ∈ K×.

Application: cdp(Qp) = 2.
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If the residue �eld k is not perfect, Ω1
k
should be taken into account.

H?(K ,Z/p(?))
Bloch-Kat	o←→ KM

? (K)/p,

via the cohomological symbol (←).

KM
? (K)←→ Ω?

K ,

via the di�erential symbol (→):

{x1, . . . , xr} 7→ dlog(x1) ∧ · · · ∧ dlog(xr ).
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Theorem (Kazuya Kat	o (simpli�ed version))
Let A be a henselian excellent discrete valuation ring of mixed characteristic (0, p).
Let K , k the corresponding �elds. Then:

cdp(K) = 1 + dimp(k),

where dimp(k) is equal to the p-rank of k, dimk Ω1
k
(= [k : kp ]), or dimk Ω1

k
+ 1.
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De�nition (of the p-dimension dimp; �rst part)

Let κ be a �eld of characteristic p > 0 and n ∈ N. We de�ne Hn+1
p (κ) as the cokernel

of the map (also denoted by "1− C−1"):

Ωn
κ

℘→ Ωn
κ/dΩn−1

κ : a
db1

b1
∧ · · · ∧

dbn

bn
7→ (a− ap)

db1

b1
∧ · · · ∧

dbn

bn
,

where

Ωi
κ :=

î

Ω1
κ/Z

and
a ∈ κ, bi ∈ κ×.

Characteristic p analogue of Hn+1(Spec(κ)ét , µ
⊗n
p ).

H1
p(κ) = κ/℘(κ). Non zero for Fp .

H2
p(κ) = Br(κ)[p].
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De�nition (of the p-dimension dimp; �nal part)

Let κ be a �eld, p a prime number.

1. Assume char.(κ) 6= p. Then dimp(κ) := cdp(κ).

2. Assume char.(κ) = p.

dimp(κ) ≤ N

i�
[κ : κp ] ≤ pN & HN+1

p (κ′) = 0 ∀κ′/κ �nite

dimp(Fp) = 1.

Remarks
The p-rank is invariant under �nite �eld extension.
Need to consider κ′/κ←→ Hr+1

p is a "constant" coe�cient cohomology theory.
(Cf. RΓ(Gκ,M) (for various p-torsion Gκ-modules M) ←→ RΓ(Gκ′ ,Z/p) (for �nite
étale κ′/κ).)
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Theorem (K. Kat	o (�nal version); analogue of Lang's theorem)
Let A be a henselian excellent discrete valuation ring and p a prime number. Then,

dimp(K) = 1 + dimp(k).

Corollary (Analogue of Tsen's theorem)
Let K/k a �eld extension of transcendence degree N and p a prime number. Then,

dimp(K) ≤ N + dimp(k).

Proof: use the "classical" formula for cdp and the possibility to make K/k a "residue
�eld extension" of a characteristic zero dvr extension.

Kazuya Kat	o.
Galois cohomology of complete discrete valuation rings.
LNM 967, .
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K. Kat	o's conjecture
Let A be an integral henselian, excellent (e.g. complete) local ring. Let K be its
fraction �eld and k its residue �eld of characteristic p > 0. Then:

dimp(K) = dim(A) + dimp(k).

(Here, dim(A) is the Krull dimension.)

Theorem (K. Kat	o, )
Let A be a normal excellent henselian local ring of dimension 2 with residue �eld k
and fraction �eld K. Suppose that k is algebraically closed. Then, for all prime
number p 6= char.(K), we have:

cdp(K) = 2.
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Remarks

I The proof uses the theorem of Merkur'ev-Suslin and resolution of singularities for
surfaces.

Sh	uji Sait	o.
Arithmetic on two dimensional local rings.
Inventiones mathematicæ 85, .

I This has been extended to an arbitrary residue �eld by Takako Kuzumaki.
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In the following, we will K. Kat	o's conjecture, namely:

Theorem
Let A be an integral henselian, excellent local ring. Let K be its fraction �eld and k its
residue �eld of characteristic p > 0. Then:

dimp(K) = dim(A) + dimp(k).

Remark
The equal-characteristic formula is proved �rst and used to show the
mixed-characteristic formula.
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Lower bound: dimp(K ) ≥ dim(A) + dimp(k)
Reduction to the normal case

We may assume A normal:
I Aν/A is �nite (A is excellent).
I dimp is invariant by �nite extension (when it is �nite).

The characteristic p case can be shown by using the classical result and the
theorem of K. Kat	o or, more simply, by using the existence of trace maps on
Hr+1
p .
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Lower bound: dimp(K ) ≥ dim(A) + dimp(k)
Induction using K. Kat	o's theorem (i.e. dim 1 case)

Let p be a height one prime ideal
L := FracAp, B = cAp (complete dvr) and bL := FracB.

Mixed characteristic: GbL ↪→ GL

⇒ cdp(K = L) ≥ cdp(bL)
≥ 1 + dimp(FracA/p) [K. Kat	o]
≥ 1 +

`
dim(A)− 1 + dimp(k)

´
[induction].

Equal characteristic:

[L : Lp ] ≥ [bL : bLp ] (if [L : Lp ] is �nite) and Hr+1
p (L)� Hr+1

p (bL).
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Upper bound: dimp(K ) ≤ dim(A) + dimp(k)
Ofer Gabber's algebraization technique

I Reduction to the complete case (Artin-Popescu; cf. excellency hyp.) ⇒ �nite
over "good" ring (i.e. ring of power series).

I (Proof of) Nagata's Jacobian criterion (equal characteristic) ⇒ generically étale
(and �nite) over good ring.
Mixed characteristic: use Helmut Epp's result.

I Rami�cation locus �nite over lower dimensional base (Weierstraÿ) and Renée
Elkik's algebraization.

⇒ relative dimension 1
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Upper bound: dimp(K ) ≤ dim(A) + dimp(k)
Ofer Gabber's algebraization technique

Ofer Gabber.
A �niteness theorem for non abelian H1 of excellent schemes.
Conférence en l'honneur de Luc Illusie, Orsay, 2005-6-27.

Ofer Gabber.
Finiteness theorems for étale cohomology of excellent schemes.
Conference in honor of Pierre Deligne, Princeton, 2005-10-17.

Michael Artin.
Cohomologie des préschémas excellents d'égales caractéristiques.
SGA 4, exposé XIX.
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Upper bound: dimp(K ) ≤ dim(A) + dimp(k)
Reduction to the complete case

Lemma
Let A be a local henselian quasi-excellent integral ring, bA its completion and K , bK the
respective fraction �elds. Then the K-algebra bK is a �ltered colimit of K-algebras of
�nite type with retraction.

De�nition
A ring A is quasi-excellent if it is noetherian and

I for all x ∈ X = Spec(A), the morphism Spec(ÔX ,x )→ Spec(OX ,x ) is regular,
I for all A′/A �nite, Reg(Spec(A′)) is open.

Such a ring is in particular "universally Japanese". For henselian local rings,
"excellent"=quasi-excellent.

Proof.
Immediate corollary of Sorin Popescu's version of M. Artin's approximation theorem.

Theorem (S. Popescu; Artin's approximation property)

Any �nite system of polynomial equations over A has a A-point i� it has abA-point.
Corollary
Let A as above and F �nite presentation functor

“
A−Alg

”
→ Set. Then

F(K)→ F(bK) is an injection.

To be applied to Hi (−,Z/p), "Hr+1
p (−)".
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Equicharacteristic upper bound: dimp(K ) ≤ dim(A) + dimp(k)
Around Nagata's Jacobian criterion

Theorem (O. Gabber, conf. L. Illusie, lemma 8.1)
Let A be an integral local complete noetherian ring of dimension d with residue �eld
k. There exists a subring A0 of A, isomorphic to k[[t1, . . . , td ]] such that
Spec(A)→ Spec(A0) is �nite, generically étale.

Remark
This theorem is obvious in mixed characteristic (hence "generically of characteristic
zero"). However, in the algebraization process, it is also used (see below).
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Equicharacteristic upper bound: dimp(K ) ≤ dim(A) + dimp(k)
Algebraization 1/2

X = Spec(A)→ X0 = Spec(A0) is �nite, generically étale. X0 ' Adk
∧
(o)

.

Let R ⊂ X0 rami�cation locus. WMA: point (t1, . . . , td−1) /∈ R ⇒ so (Weierstraÿ)
R ⊂ V (r), r monic polynomial in k[[x1, . . . , xd−1]][xd ].
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Reminder on Weierstraÿ theorem

Theorem (Weierstraÿ, circa )

1. Let κ be a local complete ring (e.g. a �eld) with maximal ideal m, and
f ∈ κ[[t1, . . . , tn]] with f ≡ (u ∈ κ[[tn]]×) · tNn mod. (m, t1, . . . , tn−1). Then
f = unit · P, where P ∈ κ[[t1, . . . , tn−1]][tn].

2. For each element f ∈ κ[[t1, . . . , tn]] non zero mod m, there exists a κ-linear
automorphism α, de�ned by α(ti ) = ti + t

ci
n for i = 1, . . . , n − 1 (and suitable

ci 's), and α(tn) = tn such that α(f ) is as in (1).
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Equicharacteristic upper bound: dimp(K ) ≤ dim(A) + dimp(k)
Algebraization 2/2

X = Spec(A)→ X0 = Spec(A0) is �nite, generically étale. X0 ' Adk
∧
(o)

.

Let R ⊂ X0 rami�cation locus. WMA: point (x1, . . . , xd−1) /∈ R ⇒ ⇒ so (Weierstraÿ)
R ⊂ V (r), r monic polynomial in k[[x1, . . . , xd−1]][xd ].

In particular:

I V (r) comes from fX0 := Spec(k[[x1, . . . , xd−1]]{xd}).
I The r -adic completion of fX0 is X0.

I The ("algebraized") pair (fX0,V (r)) is henselian, ⇒ we can use R. Elkik's
theorem to descend X → X0 to eX → fX0.
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Reminder on Renée Elkik's theorem

De�nition
A pair (X = Spec(A),Y = V (I )) is henselian if for every polynomial f ∈ A[T ], every
simple root of f in A/I lifts to a root in A.

Theorem (Renée Elkik, )
Let (X = Spec(A),Y = V (I )) be an henselian pair with A noetherian. Let bX be the

completion of X along Y and bY be the corresponding closed subscheme. Assume for
simplicity that the complement U of Y in X is connected. Then bU := bX − bY is also
connected and the map

π1(U)→ π1(bU)

is an isomorphism.

Renée Elkik
Solutions d'équations à coe�cients dans un anneau hensélien.
Annales scienti�ques de l'École normale supérieure, .
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Equicharacteristic upper bound: proof
1/3

Set d = dim(A), r = dimk Ω1
k
, n = r + d .

`
dimp K = dimK Ω1

K
+ {0, 1}

´ ?
≤ d +

`
dimp(k) = r + {0, 1}

´
.

dimK Ω1
K

easy
= dim(A) + dimk Ω1

k
(= d + r)

1
?!
≤ 0. ←→ Hr+1

p (k) = 0⇒ Hn+1
p (K) = 0 (applied to K ′/K).

Reminder
If dimκ Ω1

κ = r , dimp(κ) = r , i� ∀κ′/κ �nite, Hr+1
p (κ′) = 0

where Hr+1
p (κ) is the cokernel of the map:

Ωr
κ

℘→ Ωr
κ/dΩr−1

κ : a
db1

b1
∧ · · · ∧

dbr

br
7→ (a− ap)

db1

b1
∧ · · · ∧

dbr

br
.

Assume Hr+1
p (k) = 0 (and similarly for �nite extension), and take an element in Ωn

K
.

Want to show it belongs to the image of ℘ (modulo exact forms).
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Equicharacteristic upper bound: proof
2/3

As above: d = dim(A), r = dimk Ω1
k
, n = r + d , assume Hr+1

p (k) = 0, and consider
ω
f
∈ Ωn

K
, where ω ∈ Ωn

A
/torsion and f ∈ mA − {0}.

Let A0 = k[[x1, . . . , xd ]] as in O. Gabber's theorem and we have by algebraization a
cartesian diagram

X = Spec(A)

�

��

// eX = Spec(eA)

�nite, gen. étale

��
X0 = Spec(A0) // fX0 = Spec(fA0)

where fA0 = k[[x1, . . . , xd−1]]{xd}.

We may assume f ∈ A0 (by taking norms).
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Equicharacteristic upper bound: proof
3/3

Up to a change of the �rst coordinates (Weierstraÿ), we may assume
f ∈ k[[x1, . . . , xd−1]][xd ] and is monic. (In particular, it belongs tofA0 = k[[x1, . . . , xd−1]]{xd}.)
It follows, that A is the f -adic completion of eA.
Hence,

ω

f
=

` ω̃

f
∈ ΩneA/tors.

´
+

`
? ∈ mAΩn

A/tors.
´

Surjectivity of ℘?

I Second term: easy. Cf. a = ℘(a + ap + ap
2

+ · · · ).
I First term: Frac eA of transcendence degree one over Frac k[[x1, . . . , xd−1]] ⇒ use

K. Kat	o's theorem and induction.
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Mixed-characteristic upper bound: cdp(K ) ≤ dim(A) + dimp(k)

Easier: X = Spec(A)→ X0 = Spec(A0) (A0 = C [[x1, . . . , xd−1]], C Cohen (discrete
valuation) ring, �nite and generically étale (obvious).

Di�culty: we don't want the rami�cation locus to be, for example, V (p) ⊂ X0 (⇒no
hope to apply Weierstraÿ, to algebraize).

Solution: use H. Epp's theorem to make X generically étale over the "special �ber"
V (p). (This is part of Ofer Gabber's method to prove �niteness of cohomology.)

Algebraization of cohomology class more subtle than the algebraization of the
"denominator" f above (uses formal/henselian comparison theorem).
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Reminder on Helmut Epp's theorem

Theorem (Helmut Epp, )
Let T → S a dominant morphism of complete traits, of residue characteristic p > 0.
Assume the residue �eld κS is perfect and that the maximal perfect sub�eld of κT is
algebraic over κS . Then there exists a �nite extension of traits S ′ → S such that

T ′ := (T ×S S ′)ν
red

has reduced special �ber over S ′.

Helmut Epp
Eliminating wild rami�cation.
Inventiones mathematicæ, .

Franz-Viktor Kuhlmann
A correction to Epp's paper �Elimination of wild rami�cation�
Inventiones mathematicæ, .
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Mixed-characteristic upper bound: cdp(K ) ≤ dim(A) + dimp(k)
Sketch 1/2

Let k0 the maximal perfect sub�eld of the residue �eld k of A (A is complete, normal).

Apply H. Epp's result over W (k0), at the generic points of V (p), to get reduced
special �ber.

Lemma
Let X be a noetherian normal scheme. Every generically reduced Cartier divisor is
reduced.

Get by O. Gabber's theorem Xp → Spec(k[[x1, . . . , xd−1]]) �nite, generically étale.

Lift to X → X0 := Spec(C(k)[[x1, . . . , xd−1]]. (C(k) = Cohen ring.)

By construction, rami�cation locus (downstairs) doesn't contain V (p). Weierstraÿ⇒
contained in V (f ), f ∈ C(k)[[x1, . . . , xd−2]][xd−1] (up to change of coordinates).
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Upper bound: cdp(K ) ≤ dim(A) + dimp(k) = d + r
Sketch 2/2

We can algebraize X → X0 (R. Elkik) intoeX → fX0 = Spec(C(k)[[x1, . . . , xd−2]]{xd−1}).

We want to show that Hd+r+i (K ,Z/p) = 0, for all i > 0. Choose c.

Extend c to an algebraizable locus of X? (I.e. does it come from eK?)

Apply K. Kat	o's theorem and equal characteristic case in the codimension one point
(in the special �ber), to make the "pole" locus small in V (p).

Lemma
Let B be a discrete valuation ring, Bh its henselization, and K (resp. Kh) the
respective fraction �elds. If the image of an element c ∈ Hj (Spec(K)ét ,Z/N) is zero
in Hj (Spec(Kh)ét ,Z/N), then c belongs to the image of the restriction morphism

Hj (Spec(B)ét ,Z/N)→ Hj (Spec(K)ét ,Z/N).

Weierstraÿ / R. Elkik + Fujiwara-Gabber (+ K. Kat	o and induction) to conclude.

�

In fact, use of H. Epp ⇒ one needs to be more careful.
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Reminder on Kazuhiro Fujiwara and Ofer Gabber's theorem

Theorem (Kazuhiro Fujiwara and O. Gabber)
For a noetherian henselian pair (X = Spec(A),Y = V (I )) and a torsion étale sheaf F
on U := X − Y , the canonical morphism

Ha(Uét , F )→ Ha(bUét , bF )

is an isomorphism.

Observe that we don't make hypothesis on the torsion.

Kazuhiro Fujiwara.
Theory of tubular neighborhood in étale topology.
Duke mathematical journal, .
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Esta terminado.

32/ 36



Proof of O. Gabber's theorem 1/4

Theorem (O. Gabber, conf. L. Illusie, lemma 8.1)
Let A be an integral local complete noetherian ring of dimension d with residue �eld
k. There exists a subring A0 of A, isomorphic to k[[t1, . . . , td ]] such that
Spec(A)→ Spec(A0) is �nite, generically étale.

Let κ be a �eld of representative of k in A (to be changed later) ←→ lifting Bi (i ∈ I )
in A of a p-basis bi of k (hence non unique if k isn't perfect).
For all �nite subset e ⊂ I , let κe := κp(Bi , i /∈ e) ⇒ �ltered decreasing family of
co�nite sub-κp-extension of κ, such that ∩eκe = κp .
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Proof of O. Gabber's theorem 2/4
κe := κp(Bi , i /∈ e), Bi lifting p-basis, e �nite; ∩eκe = κp .

Let t1, . . . , td ∈ A a system of parameters
Ke := Fracκe [[t

p
1 , . . . , tp

d
]] ⊂ Kκ := Fracκ[[t1, . . . , td ]] ⊂ K .\

e

Ke = Kp
κ

big e⇒ rkK Ω1
K/Ke

= rkKκ Ω1
Kκ/Ke

.

Observe:
I rkK Ω1

K/Ke
= rkA Ω1

A/κe [[t
p
1 ,...,t

p
d

]]
(gen. rank i.e. rkK (K ⊗A −)),

I rkKκ Ω1
Kκ/Ke

= d + rkκ Ω1
κ/κe

Hence:

rkA Ω1
A/κe [[t

p
1 ,...,t

p
d

]]
= dim(A) + rkκ Ω1

κ/κe
= d + #e for some �nite set e.

(Reminder: Ω1
κ/κe

generated by the dBi , i ∈ e.)

By changing the lifting Bi of bi , i ∈ e (i.e. Bi  Bi + (mi ∈ mA)), we can make the
dBi linearly independent in Ω1

A/κe [[t
p
1 ,...,t

p
d

]]
⊗A K .

(Use: d
`
mA) generically generates Ω1

A
.)

Using the corresponding �elds of representatives (still denoted by κ), we achieve:

rkAΩ1
A/κ[[t

p
1 ,...,t

p
d

]]
= dim(A).34/ 36



Proof of O. Gabber's theorem 3/4

rkAΩ1
A/Rκ

= dim(A).

(Rκ := κ[[t1, . . . , td ]])

Let f1, . . . , fd ∈ A such that the dfi form a basis of Ω1
A/Rκ

⊗ K . WLOG: fi ∈ mA.

Take
t′i := tp

i
(1 + fi ).

Observe: dt′
i
= tp

i
dfi .

Then, A is �nite, generically étale over the subring A0 = κ[[t′1, . . . , t
′
d
]].
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Proof of O. Gabber's theorem 4/4

This completes the proof of:

Theorem (O. Gabber)
Let A be a local complete noetherian integral ring of dimension d with residue �eld κ.
There exists a subring A0 of A, isomorphic to κ[[t1, . . . , td ]] such that
Spec(A)→ Spec(A0) is �nite, generically étale.
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