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Troughout this talk, k denotes a field and ks denotes its separable closure. Denote by
Gk the absolute Galois group Gal(ks/k).

1 First Notions

Definition 1.1. An Azumaya algebra over a filed k is a k-algebra A such that A ⊗k ks is
isomorphic as a ks-algebra to the matrix algebra Mn(ks) for some n ≥ 1.

In short, an Azumaya algebra is a twist of a matrix algebra.

Proposition 1.2 (Characterizations of Azumaya algebras). The following conditions on a
k-algebra A are equivalent:

(1) The algebra A is an Azumaya algebra.

(2) There exists a finite separable extension L ⊇ k such that the L-algebra A ⊗k L is iso-
morphic to the matrix algebra Mn(L) for some n ≥1.

(3) The algebra A is a finite-dimensional simple central algebra.

(4) There is a k-algebra isomorphism A ' Mr(D) for some integer r ≥ 1 and some finite-
dimensional central division algebra D over k.

In (4), r and D are uniquely determined by A.

Definition 1.3. The Brauer group of k, denoted by Br k, is the group of equivalence
classes of Azumaya algebras over k with multiplication induced by tensor products, un-
der the equivalence relation such that A ∼ B if Mm(A) ' Mn(B) as k-algebras for some
m,n.
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Theorem 1.4 (Skolem-Noether). For any two k-algebra morphisms f, g from a simple k-
algebraA to an Azumaya k-algebraB, there exists b ∈ B× such that f(x) = bg(x)b−1 for all
x ∈ A.

Proof. We first cheat the case that B is a matrix algebra, i.e. B = Mn(k) = Endk(k
n).

Then the morphisms define actions ofA on kn — let Vf and Vg denote kn with the actions
defined by f and g. Since two A-modules with the same dimension are isomorphic, we
have an isomorphism b : Vg → Vf which is an element ofMn(k) satisfying f(a) ·b = b ·g(a)

for all a ∈ A.
In the general case, we consider the morphisms

f ⊗ 1, g ⊗ 1 : A⊗k Bopp → B ⊗k Bopp.

Because B ⊗k Bopp is a matrix algebra over k, the first part of the proof shows that there
exists b ∈ B ⊗k Bopp such that

(f ⊗ 1)(a⊗ b′) = b · (g ⊗ 1)(a⊗ b′) · b−1

for all a ∈ A, b′ ∈ Bopp. On taking a = 1 in this equation, we find that (1⊗b′) = b·(1⊗b′)·b−1

for all b′ ∈ Bopp. Therefore, b ∈ CB⊗kBopp(k ⊗ Bopp) = B ⊗ kk, i.e. b = b0 ⊗ 1 with b0 ∈ B.
On taking b′ = 1 in this equation, we find that

f(a)⊗ 1 = (b0 · g(a) · b−1
0 )⊗ 1

for all a ∈ A, and so b0 is the element sought.

Corollary 1.5. All automorphisms of a central simple k-algebra are inner. In particular,
the automorphism group of Mn(k) is PGLn(k) := GLn(k)/k×In.

2 Cohomological interpretation of the Brauer group

Proposition 2.1. For each r ≥ 1, there is a natural bijection

{Azumaya k-algebra of dimension r2}
k- isomorphism

' H1(Gk,PGLr(ks)).

Proof. LetA be an Azumaya k-algebra such thatA⊗k ks ' Mr(ks) via an isomorphism Φ.
Define

ασ = Φ−1 ◦ (id⊗σ) ◦ Φ ◦ (id⊗σ−1) ∈ Autks−algebras(Mr(ks)) ' PGLr(ks).
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We can verify that α is a 1-cocycle. Different choices of Φ actually give cohomologous
cocycles. Thus we get an elemnt of H1(Gk,PGLr(ks)) depending only on A. Now we
prove that this map is injective. Suppose we have another Azumaya algebra B satisfying
[B : k] = r2 and Ψ : Mr(ks) ' B ⊗k ks. Since Φ and Ψ give cohomologous cocycles, after
changing Φ (i.e. composing it with an automorphism of Mr(ks)), we can suppose the two
cocycles are equal. Then we have ΨΦ−1 = (ΨΦ−1)σ for all σ ∈ Gk, and thus the ks-algebra
isomorphism ΨΦ−1 : A⊗k ks → B ⊗k ks restricts to a k-algebra isomorphism A ' B.

Conversely, given a cocycle α ∈ Z1(Gk, (PGLr(ks)), we set

A = {x ∈ Mr(ks)|ασ ◦ (id⊗σ)(x) = x for all σ ∈ Gk}

which is the Azumaya k-algebra we want.

Taking cohomology of the short exact sequence of Gk-modules

1→ k×s → GLr(ks)→ PGLr(ks)→ 1

yields a morphism
∆r : H1(Gk,PGLr(ks))→ H2(Gk, k

×
s ).

Combined with the previous proposition, we have a group morphism δ : Br k → H2(Gk, k
×
s ).

Proposition 2.2. The morphism δ : Br k → H2(Gk, k
×
s ) is bijective.

Proof. The injectivity follows from the cohomological long exact sequence and the fact
that H1(Gk,GLr(ks)) = 0. Now we prove the surjectivity. Choose α ∈ H2(Gk, k

×
s ), and

suppose that the image of α vanish in H2(Gal(ks, k
′), k×s ) ' H2(Gs, (ks ⊗k k′)×) for some

finite extension k′ ⊆ ks of k of degree r. Fix a basis of k′ as k-space and we can define a
morphism (ks ⊗k k′)× → GLr(ks) which associates to x the endomorphism of multipli-
cation by x. Then we have the commutative diagram with exact lines:

1 k×s (ks ⊗k k′)× (ks ⊗k k′)×/k×s 1

1 k×s GLr(ks) PGLr(ks) 1.

(2.2.1)

Passing to cohomology, we have the following commutative diagram and the result fol-
lows:

H1(Gk, (ks ⊗k k′)×/k×s ) H2(Gk, ks×) H2(Gk, (ks ⊗k k′)×)

H1(Gk,PGLr(ks)) H2(Gk, k
×
s )

∆r

(2.2.2)
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Now we consider the long exact sequence of cohomology associated to

0→ µn → k×s → k×s → 0.

We can then get that H2(k, µn) ' (Br k)[n], where (Br k)[n] denotes the elements in Br k

that are n-torsion.

3 Tsen’s theorem

Definition 3.1. Let k be a field. Then k is called C1 if and only if every homogeneous
polynomial f(x1, · · · , xn) of degree d > 0 in n variables with n > d has a nontrivial zero
in kn.

Proposition 3.2. If k is C1, then Br k = 0.

Proof. Let D be a finite-dimensional central division algebra over k, so [D : k] = r2 for
some r ≥ 1. An associated reduced norm form is of degree r in r2 variables and has no
nontrivial zero. This contradicts the C1 property unless r = 1. This holds for all D, so
Br k = 0.

Theorem 3.3 (Tsen). IfL is a the function field of a curve over an algebraically closed field
k (that is, L is a finitely generated extension of k of transcendence degree 1), then L is C1.

Proof. First consider the case where L is purely transcendental, i.e. L = k(t). Let f ∈
L[x1, · · · , xn] be a homogeneous polynomial of degree d > 0, where n > d. Multiplying f
by a polynomial in k[t] to clear denominators, we may assume that f has coefficients in
k[t]. Let m be the maximum of the degrees of these coefficients. We use the method of
undetermined coefficients. Choose s ∈ Z>0 large (later we will say how large), introduce
new variables yij with 1 ≤ i ≤ n and 0 ≤ j ≤ s, and substitute

xi =
s∑
j=0

yijt
j

for all i into f , so that

f(x1, · · · , xn) = F0 + F1t+ · · ·+ Fds+mt
ds+m,

where each Fl ∈ k[{yij}] is a homogeneous polynomial of degree d in n(s + 1) variables.
Because n > d,

n(s+ 1) > ds+m+ 1
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holds for sufficiently large s and k is algebraically closed, the projective dimension the-
orem implies that the Fl have a nontrivial common zero over k. This means that f has a
nontrivial zero over k[t], hence over k(t).

Then it suffices to prove that ifL is algebraic over k(t), thenL isC1. Let f ∈ L[x1, · · · , xn]

be a homogeneous polynomial of degree d > 0 where n > d. Since L is algebraic over
k(t), the coefficients of f generate a finite extension of k. Thus we can suppose that L is
a finite extension over k. Choose a basis e1, · · · , cs of L over k(t). Introduce new variables
yij and substitute

xi =
s∑
j=0

yije
j

for all i into f , so that
f(x1, · · · , xn) = F1e1 + · · ·+ Fses,

where each Fl ∈ k[{yij}] is a homogeneous polynomial of degree d in sn variables. Now it
suffices to find in k(t) a nontrivial zero of the homogeneous polynomial g(yij) := NL/k(f),
which is of degree sd in sn variables. Since n > d and k(t) is C1, we have the desired
result.
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