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Troughout this talk, £ denotes a field and &, denotes its separable closure. Denote by
Gy, the absolute Galois group Gal(k,/k).

1 First Notions

Definition 1.1. An Azumaya algebra over a filed £ is a k-algebra A such that A ®;, k; is
isomorphic as a k-algebra to the matrix algebra M,, (k,) for some n > 1.

In short, an Azumaya algebra is a twist of a matrix algebra.

Proposition 1.2 (Characterizations of Azumaya algebras). The following conditions on a
k-algebra A are equivalent:

(1) The algebra A is an Azumaya algebra.

(2) There exists a finite separable extension L O k such that the L-algebra A ®y, L is iso-
morphic to the matrix algebra M,,(L) for somen >1.

(3) The algebra A is a finite-dimensional simple central algebra.

(4) There is a k-algebra isomorphism A ~ M,.(D) for some integerr > 1 and some finite-
dimensional central division algebra D over k.

In (4), r and D are uniquely determined by A.

Definition 1.3. The Brauer group of k, denoted by Brk, is the group of equivalence
classes of Azumaya algebras over k£ with multiplication induced by tensor products, un-
der the equivalence relation such that A ~ B if M,,,(A) ~ M,,(B) as k-algebras for some

m,n.



Theorem 1.4 (Skolem-Noether). For any two k-algebra morphisms f, g from a simple k-
algebra A to an Azumaya k-algebra B, there existsb € B* such that f(x) = bg(x)b™" forall
x € A.

Proof. We first cheat the case that B is a matrix algebra, i.e. B = M, (k) = End(k").
Then the morphisms define actions of A on k" —1let V; and V,, denote £" with the actions
defined by f and g. Since two A-modules with the same dimension are isomorphic, we
have an isomorphism b : V;, — V; which is an element of M, (k) satistying f(a)-b = b-g(a)
foralla € A.

In the general case, we consider the morphisms

fRlLgl: ARy B®? - B®; BPP.

Because B ®, B°PP is a matrix algebra over £, the first part of the proof shows that there
exists b € B ®;, B°PP such that

(feDaab)=b-(gol)(axt) b~

foralla € A, b € B, Ontakinga = 1in this equation, we find that (120") = b-(1®b)-b~*
forall ¥ € B°PP. Therefore, b € Cpg, pore (k ® B°??) = B ® kk,i.e. b = by ® 1 with by € B.
On taking ¥ = 1 in this equation, we find that

fla)®1=(bo-gla) by @1
forall a € A, and so b, is the element sought. O

Corollary 1.5. All automorphisms of a central simple k-algebra are inner. In particular,
the automorphism group of M,,(k) isPGL,, (k) := GL,(k)/k* L,.

2 Cohomological interpretation of the Brauer group

Proposition 2.1. Foreachr > 1, there is a natural bijection

{Azumaya k-algebra of dimension r*}

~ 1
k- isomorphism ~ H(Gy, PGLy (k).

Proof. Let A be an Azumaya k-algebra such that A ®; ks ~ M, (k,) via an isomorphism &.
Define

ay =P o (id®o) o Po (id®o ") € Auty, _aigebras(M,(ks)) ~ PGL,(k;).



We can verify that « is a 1-cocycle. Different choices of ¢ actually give cohomologous
cocycles. Thus we get an elemnt of H'(G, PGL,(ks)) depending only on A. Now we
prove that this map is injective. Suppose we have another Azumaya algebra B satisfying
[B: k] =r?and ¥ : M, (k,) ~ B ®; k,. Since ¢ and ¥ give cohomologous cocycles, after
changing @ (i.e. composing it with an automorphism of M,.(k)), we can suppose the two
cocycles are equal. Then we have V¢! = (¢&~1)? for all ¢ € G}, and thus the k,-algebra
isomorphism ¥¢~! : A @, k, — B ®y, k, restricts to a k-algebra isomorphism A ~ B.
Conversely, given a cocycle a € Z'(Gy, (PGL,(ks)), we set

A={x e M,(ks)|a, o (id®c)(x) = xforall o € G}.}
which is the Azumaya k-algebra we want. O
Taking cohomology of the short exact sequence of G-modules
1 — kS — GL,(ks) — PGL, (k) — 1

yields a morphism
A, : H'(Gy, PGL,(k,)) — H*(Gy, k).

Combined with the previous proposition, we have a group morphism § : Brk — H?(Gy, k).
Proposition 2.2. The morphism§ : Brk — H?(Gy, k) is bijective.

Proof. The injectivity follows from the cohomological long exact sequence and the fact
that H'(G},, GL,(ks)) = 0. Now we prove the surjectivity. Choose a € H?*(Gy, k), and
suppose that the image of o vanish in H?(Gal(k,, k'), kX) ~ H?*(Gs, (ks @ k')*) for some
finite extension &’ C k, of k of degree r. Fix a basis of k" as k-space and we can define a
morphism (ks ®; k') — GL,(ks) which associates to = the endomorphism of multipli-
cation by z. Then we have the commutative diagram with exact lines:

1 >k y (ks @p K —— (ks @ k) k) —— 1
‘ l l (2.2.1)
1 > kY > GL,(k;) ——— PGL,(k;) ——— 1.

Passing to cohomology, we have the following commutative diagram and the result fol-
lows:

H1<Gk,(l€5 Rk k/)x/k;<> — H2<Gk,k}3><) — H2(Gk,<ks (S k/)x)
l H (2.2.2)
HY(Gy, PGL,(k,)) —=2— H2(Gy, k)



Now we consider the long exact sequence of cohomology associated to
0— pin = kS =k —0.

We can then get that H%(k, ,,) ~ (Br k)[n], where (Br k)[n] denotes the elements in Br
that are n-torsion.

3 Tsen’s theorem

Definition 3.1. Let & be a field. Then £ is called (4 if and only if every homogeneous
polynomial f(xq,---,x,) of degree d > 0 in n variables with n > d has a nontrivial zero
in k™.

Proposition 3.2. Ifk isC,, thenBrk = 0.

Proof. Let D be a finite-dimensional central division algebra over %, so [D : k] = r? for
some r > 1. An associated reduced norm form is of degree r in r? variables and has no
nontrivial zero. This contradicts the C; property unless » = 1. This holds for all D, so
Brk =0. [

Theorem 3.3 (Tsen). If L is a the function field of a curve over an algebraically closed field
k (that is, L is a finitely generated extension of k of transcendence degree 1), then L is C.

Proof. First consider the case where L is purely transcendental, i.e. L = k(t). Let f €
Lixy,--- ,z,] be ahomogeneous polynomial of degree d > 0, where n > d. Multiplying f
by a polynomial in &[] to clear denominators, we may assume that f has coefficients in
k[t]. Let m be the maximum of the degrees of these coefficients. We use the method of
undetermined coefficients. Choose s € Z- large (later we will say how large), introduce
new variables y;; with 1 < <nand0 < j < s, and substitute

s

T = Z yist’

=0
for all i into f, so that
f([L'h . ,:L'n) = FO —+ Flt + -+ Fds+mtds+m,

where each F; € k[{y;;}] is a homogeneous polynomial of degree d in n(s + 1) variables.
Because n > d,
n(s+1)>ds+m+1



holds for sufficiently large s and k is algebraically closed, the projective dimension the-
orem implies that the F; have a nontrivial common zero over k. This means that f has a
nontrivial zero over k|t], hence over k(t).

Then it suffices to prove that if L is algebraic over k(¢), then Lis Cy. Let f € L{zy,--- , x,]
be a homogeneous polynomial of degree d > 0 where n > d. Since L is algebraic over
k(t), the coefficients of f generate a finite extension of k. Thus we can suppose that L is
a finite extension over k. Choose abasis ey, - - - , ¢; of L over k(t). Introduce new variables

y;; and substitute
S
Ti = Z yijej
§=0

for all i into f, so that
f(xla"' 71771) :F1€1+"'+F563,

where each F; € k[{y;;}] isahomogeneous polynomial of degree d in sn variables. Now it
suffices to find in k() a nontrivial zero of the homogeneous polynomial g(y;;) := Nix(f),
which is of degree sd in sn variables. Since n > d and k(t) is C;, we have the desired
result. O
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