Azumaya Algebras and Tsen's Theorem: A Talk

Haowen Zhang

April 3, 2019

Troughout this talk, k denotes a field and k_s denotes its separable closure. Denote by G_k the absolute Galois group $Gal(k_s/k)$.

1 First Notions

Definition 1.1. An **Azumaya algebra** over a filed *k* is a *k*-algebra *A* such that $A \otimes_k k_s$ is isomorphic as a k_s -algebra to the matrix algebra $M_n(k_s)$ for some $n \ge 1$.

In short, an Azumaya algebra is a twist of a matrix algebra.

Proposition 1.2 (Characterizations of Azumaya algebras). *The following conditions on a k*-algebra A are equivalent:

- (1) The algebra A is an Azumaya algebra.
- (2) There exists a finite separable extension $L \supseteq k$ such that the *L*-algebra $A \otimes_k L$ is isomorphic to the matrix algebra $M_n(L)$ for some $n \ge 1$.
- (3) The algebra A is a finite-dimensional simple central algebra.
- (4) There is a k-algebra isomorphism $A \simeq M_r(D)$ for some integer $r \ge 1$ and some finitedimensional central division algebra D over k.

In (4), r and D are uniquely determined by A.

Definition 1.3. The Brauer group of k, denoted by Br k, is the group of equivalence classes of Azumaya algebras over k with multiplication induced by tensor products, under the equivalence relation such that $A \sim B$ if $M_m(A) \simeq M_n(B)$ as k-algebras for some m, n.

Theorem 1.4 (Skolem-Noether). For any two k-algebra morphisms f, g from a simple k-algebra A to an Azumaya k-algebra B, there exists $b \in B^{\times}$ such that $f(x) = bg(x)b^{-1}$ for all $x \in A$.

Proof. We first cheat the case that *B* is a matrix algebra, i.e. $B = M_n(k) = \text{End}_k(k^n)$. Then the morphisms define actions of *A* on k^n — let V_f and V_g denote k^n with the actions defined by *f* and *g*. Since two *A*-modules with the same dimension are isomorphic, we have an isomorphism $b : V_g \to V_f$ which is an element of $M_n(k)$ satisfying $f(a) \cdot b = b \cdot g(a)$ for all $a \in A$.

In the general case, we consider the morphisms

$$f \otimes 1, g \otimes 1 : A \otimes_k B^{\mathrm{opp}} \to B \otimes_k B^{\mathrm{opp}}.$$

Because $B \otimes_k B^{\text{opp}}$ is a matrix algebra over k, the first part of the proof shows that there exists $b \in B \otimes_k B^{\text{opp}}$ such that

$$(f \otimes 1)(a \otimes b') = b \cdot (g \otimes 1)(a \otimes b') \cdot b^{-1}$$

for all $a \in A, b' \in B^{opp}$. On taking a = 1 in this equation, we find that $(1 \otimes b') = b \cdot (1 \otimes b') \cdot b^{-1}$ for all $b' \in B^{opp}$. Therefore, $b \in C_{B \otimes_k B^{opp}}(k \otimes B^{opp}) = B \otimes kk$, i.e. $b = b_0 \otimes 1$ with $b_0 \in B$. On taking b' = 1 in this equation, we find that

$$f(a) \otimes 1 = (b_0 \cdot g(a) \cdot b_0^{-1}) \otimes 1$$

for all $a \in A$, and so b_0 is the element sought.

Corollary 1.5. All automorphisms of a central simple k-algebra are inner. In particular, the automorphism group of $M_n(k)$ is $PGL_n(k) := GL_n(k)/k^{\times}I_n$.

2 Cohomological interpretation of the Brauer group

Proposition 2.1. For each $r \ge 1$, there is a natural bijection

$$\frac{\{Azumaya \ k-algebra \ of \ dimension \ r^2\}}{k-isomorphism} \simeq H^1(G_k, \operatorname{PGL}_r(k_s)).$$

Proof. Let *A* be an Azumaya *k*-algebra such that $A \otimes_k k_s \simeq M_r(k_s)$ via an isomorphism Φ . Define

 $\alpha_{\sigma} = \Phi^{-1} \circ (\mathrm{id} \otimes \sigma) \circ \Phi \circ (\mathrm{id} \otimes \sigma^{-1}) \in \mathrm{Aut}_{k_s - \mathrm{algebras}}(\mathrm{M}_r(k_s)) \simeq \mathrm{PGL}_r(k_s).$

We can verify that α is a 1-cocycle. Different choices of Φ actually give cohomologous cocycles. Thus we get an elemnt of $H^1(G_k, \operatorname{PGL}_r(k_s))$ depending only on A. Now we prove that this map is injective. Suppose we have another Azumaya algebra B satisfying $[B:k] = r^2$ and $\Psi: \operatorname{M}_r(k_s) \simeq B \otimes_k k_s$. Since Φ and Ψ give cohomologous cocycles, after changing Φ (i.e. composing it with an automorphism of $\operatorname{M}_r(k_s)$), we can suppose the two cocycles are equal. Then we have $\Psi \Phi^{-1} = (\Psi \Phi^{-1})^{\sigma}$ for all $\sigma \in G_k$, and thus the k_s -algebra isomorphism $\Psi \Phi^{-1}: A \otimes_k k_s \to B \otimes_k k_s$ restricts to a k-algebra isomorphism $A \simeq B$.

Conversely, given a cocycle $\alpha \in Z^1(G_k, (\operatorname{PGL}_r(k_s)))$, we set

$$A = \{ x \in \mathcal{M}_r(k_s) | \alpha_\sigma \circ (\mathrm{id} \otimes \sigma)(x) = x \text{ for all } \sigma \in G_k \}$$

which is the Azumaya *k*-algebra we want.

Taking cohomology of the short exact sequence of G_k -modules

$$1 \to k_s^{\times} \to \operatorname{GL}_r(k_s) \to \operatorname{PGL}_r(k_s) \to 1$$

yields a morphism

$$\Delta_r : H^1(G_k, \operatorname{PGL}_r(k_s)) \to H^2(G_k, k_s^{\times})$$

Combined with the previous proposition, we have a group morphism δ : Br $k \to H^2(G_k, k_s^{\times})$.

Proposition 2.2. The morphism δ : Br $k \to H^2(G_k, k_s^{\times})$ is bijective.

Proof. The injectivity follows from the cohomological long exact sequence and the fact that $H^1(G_k, \operatorname{GL}_r(k_s)) = 0$. Now we prove the surjectivity. Choose $\alpha \in H^2(G_k, k_s^{\times})$, and suppose that the image of α vanish in $H^2(\operatorname{Gal}(k_s, k'), k_s^{\times}) \simeq H^2(G_s, (k_s \otimes_k k')^{\times})$ for some finite extension $k' \subseteq k_s$ of k of degree r. Fix a basis of k' as k-space and we can define a morphism $(k_s \otimes_k k')^{\times} \to \operatorname{GL}_r(k_s)$ which associates to x the endomorphism of multiplication by x. Then we have the commutative diagram with exact lines:

Passing to cohomology, we have the following commutative diagram and the result follows:

Now we consider the long exact sequence of cohomology associated to

$$0 \to \mu_n \to k_s^{\times} \to k_s^{\times} \to 0.$$

We can then get that $H^2(k, \mu_n) \simeq (\operatorname{Br} k)[n]$, where $(\operatorname{Br} k)[n]$ denotes the elements in $\operatorname{Br} k$ that are *n*-torsion.

3 Tsen's theorem

Definition 3.1. Let k be a field. Then k is called C_1 if and only if every homogeneous polynomial $f(x_1, \dots, x_n)$ of degree d > 0 in n variables with n > d has a nontrivial zero in k^n .

Proposition 3.2. If k is C_1 , then Br k = 0.

Proof. Let *D* be a finite-dimensional central division algebra over k, so $[D : k] = r^2$ for some $r \ge 1$. An associated reduced norm form is of degree r in r^2 variables and has no nontrivial zero. This contradicts the C_1 property unless r = 1. This holds for all *D*, so Br k = 0.

Theorem 3.3 (Tsen). If L is a the function field of a curve over an algebraically closed field k (that is, L is a finitely generated extension of k of transcendence degree 1), then L is C_1 .

Proof. First consider the case where L is purely transcendental, i.e. L = k(t). Let $f \in L[x_1, \dots, x_n]$ be a homogeneous polynomial of degree d > 0, where n > d. Multiplying f by a polynomial in k[t] to clear denominators, we may assume that f has coefficients in k[t]. Let m be the maximum of the degrees of these coefficients. We use the method of undetermined coefficients. Choose $s \in \mathbb{Z}_{>0}$ large (later we will say how large), introduce new variables y_{ij} with $1 \le i \le n$ and $0 \le j \le s$, and substitute

$$x_i = \sum_{j=0}^s y_{ij} t^j$$

for all i into f, so that

$$f(x_1, \cdots, x_n) = F_0 + F_1 t + \cdots + F_{ds+m} t^{ds+m},$$

where each $F_l \in k[\{y_{ij}\}]$ is a homogeneous polynomial of degree d in n(s + 1) variables. Because n > d,

$$n(s+1) > ds + m + 1$$

holds for sufficiently large s and k is algebraically closed, the projective dimension theorem implies that the F_l have a nontrivial common zero over k. This means that f has a nontrivial zero over k[t], hence over k(t).

Then it suffices to prove that if *L* is algebraic over k(t), then *L* is C_1 . Let $f \in L[x_1, \dots, x_n]$ be a homogeneous polynomial of degree d > 0 where n > d. Since *L* is algebraic over k(t), the coefficients of *f* generate a finite extension of *k*. Thus we can suppose that *L* is a finite extension over *k*. Choose a basis e_1, \dots, c_s of *L* over k(t). Introduce new variables y_{ij} and substitute

$$x_i = \sum_{j=0}^s y_{ij} e^j$$

for all i into f, so that

$$f(x_1,\cdots,x_n)=F_1e_1+\cdots+F_se_s,$$

where each $F_l \in k[\{y_{ij}\}]$ is a homogeneous polynomial of degree d in sn variables. Now it suffices to find in k(t) a nontrivial zero of the homogeneous polynomial $g(y_{ij}) := N_{L/k}(f)$, which is of degree sd in sn variables. Since n > d and k(t) is C_1 , we have the desired result.