Azumaya Algebras and Tsen's Theorem: A Talk

Haowen Zhang

April 3, 2019

Troughout this talk, k denotes a field and k_{s} denotes its separable closure. Denote by G_{k} the absolute Galois group $\operatorname{Gal}\left(k_{s} / k\right)$.

1 First Notions

Definition 1.1. An Azumaya algebra over a filed k is a k-algebra A such that $A \otimes_{k} k_{s}$ is isomorphic as a k_{s}-algebra to the matrix algebra $\mathrm{M}_{n}\left(k_{s}\right)$ for some $n \geq 1$.

In short, an Azumaya algebra is a twist of a matrix algebra.
Proposition 1.2 (Characterizations of Azumaya algebras). The following conditions on a k-algebra A are equivalent:
(1) The algebra A is an Azumaya algebra.
(2) There exists a finite separable extension $L \supseteq k$ such that the L-algebra $A \otimes_{k} L$ is isomorphic to the matrix algebra $\mathrm{M}_{n}(L)$ for some $n \geq 1$.
(3) The algebra A is a finite-dimensional simple central algebra.
(4) There is a k-algebra isomorphism $A \simeq \mathrm{M}_{r}(D)$ for some integer $r \geq 1$ and some finitedimensional central division algebra D over k.

In (4), r and D are uniquely determined by A.
Definition 1.3. The Brauer group of k, denoted by $\operatorname{Br} k$, is the group of equivalence classes of Azumaya algebras over k with multiplication induced by tensor products, under the equivalence relation such that $A \sim B$ if $\mathrm{M}_{m}(A) \simeq \mathrm{M}_{n}(B)$ as k-algebras for some m, n.

Theorem 1.4 (Skolem-Noether). For any two k-algebra morphisms f, g from a simple k algebra A to an Azumaya k-algebra B, there exists $b \in B^{\times}$such that $f(x)=b g(x) b^{-1}$ for all $x \in A$.

Proof. We first cheat the case that B is a matrix algebra, i.e. $B=\mathrm{M}_{n}(k)=\operatorname{End}_{k}\left(k^{n}\right)$. Then the morphisms define actions of A on k^{n} - let V_{f} and V_{g} denote k^{n} with the actions defined by f and g. Since two A-modules with the same dimension are isomorphic, we have an isomorphism $b: V_{g} \rightarrow V_{f}$ which is an element of $M_{n}(k)$ satisfying $f(a) \cdot b=b \cdot g(a)$ for all $a \in A$.

In the general case, we consider the morphisms

$$
f \otimes 1, g \otimes 1: A \otimes_{k} B^{\mathrm{opp}} \rightarrow B \otimes_{k} B^{\mathrm{opp}}
$$

Because $B \otimes_{k} B^{\mathrm{opp}}$ is a matrix algebra over k, the first part of the proof shows that there exists $b \in B \otimes_{k} B^{\text {opp }}$ such that

$$
(f \otimes 1)\left(a \otimes b^{\prime}\right)=b \cdot(g \otimes 1)\left(a \otimes b^{\prime}\right) \cdot b^{-1}
$$

for all $a \in A, b^{\prime} \in B^{o p p}$. On taking $a=1$ in this equation, we find that $\left(1 \otimes b^{\prime}\right)=b \cdot\left(1 \otimes b^{\prime}\right) \cdot b^{-1}$ for all $b^{\prime} \in B^{\text {opp }}$. Therefore, $b \in C_{B \otimes_{k} B^{\text {opp }}}\left(k \otimes B^{\text {opp }}\right)=B \otimes k k$, i.e. $b=b_{0} \otimes 1$ with $b_{0} \in B$. On taking $b^{\prime}=1$ in this equation, we find that

$$
f(a) \otimes 1=\left(b_{0} \cdot g(a) \cdot b_{0}^{-1}\right) \otimes 1
$$

for all $a \in A$, and so b_{0} is the element sought.
Corollary 1.5. All automorphisms of a central simple k-algebra are inner. In particular, the automorphism group of $\mathrm{M}_{n}(k)$ is $\mathrm{PGL}_{n}(k):=\mathrm{GL}_{n}(k) / k^{\times} I_{n}$.

2 Cohomological interpretation of the Brauer group

Proposition 2.1. For each $r \geq 1$, there is a natural bijection

$$
\frac{\left\{\text { Azumaya } k \text {-algebra of dimension } r^{2}\right\}}{k \text { - } \text { isomorphism }} \simeq H^{1}\left(G_{k}, \mathrm{PGL}_{r}\left(k_{s}\right)\right)
$$

Proof. Let A be an Azumaya k-algebra such that $A \otimes_{k} k_{s} \simeq \mathrm{M}_{r}\left(k_{s}\right)$ via an isomorphism Φ. Define

$$
\alpha_{\sigma}=\Phi^{-1} \circ(\mathrm{id} \otimes \sigma) \circ \Phi \circ\left(\mathrm{id} \otimes \sigma^{-1}\right) \in \operatorname{Aut}_{k_{s}-\text { algebras }}\left(\mathrm{M}_{r}\left(k_{s}\right)\right) \simeq \mathrm{PGL}_{r}\left(k_{s}\right)
$$

We can verify that α is a 1-cocycle. Different choices of Φ actually give cohomologous cocycles. Thus we get an elemnt of $H^{1}\left(G_{k}, \mathrm{PGL}_{r}\left(k_{s}\right)\right)$ depending only on A. Now we prove that this map is injective. Suppose we have another Azumaya algebra B satisfying $[B: k]=r^{2}$ and $\Psi: \mathrm{M}_{r}\left(k_{s}\right) \simeq B \otimes_{k} k_{s}$. Since Φ and Ψ give cohomologous cocycles, after changing Φ (i.e. composing it with an automorphism of $\mathrm{M}_{r}\left(k_{s}\right)$), we can suppose the two cocycles are equal. Then we have $\Psi \Phi^{-1}=\left(\Psi \Phi^{-1}\right)^{\sigma}$ for all $\sigma \in G_{k}$, and thus the k_{s}-algebra isomorphism $\Psi \Phi^{-1}: A \otimes_{k} k_{s} \rightarrow B \otimes_{k} k_{s}$ restricts to a k-algebra isomorphism $A \simeq B$.

Conversely, given a cocycle $\alpha \in Z^{1}\left(G_{k},\left(\mathrm{PGL}_{r}\left(k_{s}\right)\right)\right.$, we set

$$
A=\left\{x \in \mathrm{M}_{r}\left(k_{s}\right) \mid \alpha_{\sigma} \circ(\mathrm{id} \otimes \sigma)(x)=x \text { for all } \sigma \in G_{k}\right\}
$$

which is the Azumaya k-algebra we want.
Taking cohomology of the short exact sequence of G_{k}-modules

$$
1 \rightarrow k_{s}^{\times} \rightarrow \mathrm{GL}_{r}\left(k_{s}\right) \rightarrow \mathrm{PGL}_{r}\left(k_{s}\right) \rightarrow 1
$$

yields a morphism

$$
\Delta_{r}: H^{1}\left(G_{k}, \mathrm{PGL}_{r}\left(k_{s}\right)\right) \rightarrow H^{2}\left(G_{k}, k_{s}^{\times}\right) .
$$

Combined with the previous proposition, we have a group morphism $\delta: \operatorname{Br} k \rightarrow H^{2}\left(G_{k}, k_{s}^{\times}\right)$.
Proposition 2.2. The morphism $\delta: \operatorname{Br} k \rightarrow H^{2}\left(G_{k}, k_{s}^{\times}\right)$is bijective.
Proof. The injectivity follows from the cohomological long exact sequence and the fact that $H^{1}\left(G_{k}, \mathrm{GL}_{r}\left(k_{s}\right)\right)=0$. Now we prove the surjectivity. Choose $\alpha \in H^{2}\left(G_{k}, k_{s}^{\times}\right)$, and suppose that the image of α vanish in $H^{2}\left(\operatorname{Gal}\left(k_{s}, k^{\prime}\right), k_{s}^{\times}\right) \simeq H^{2}\left(G_{s},\left(k_{s} \otimes_{k} k^{\prime}\right)^{\times}\right)$for some finite extension $k^{\prime} \subseteq k_{s}$ of k of degree r. Fix a basis of k^{\prime} as k-space and we can define a morphism $\left(k_{s} \otimes_{k} k^{\prime}\right)^{\times} \rightarrow \mathrm{GL}_{r}\left(k_{s}\right)$ which associates to x the endomorphism of multiplication by x. Then we have the commutative diagram with exact lines:

Passing to cohomology, we have the following commutative diagram and the result follows:

Now we consider the long exact sequence of cohomology associated to

$$
0 \rightarrow \mu_{n} \rightarrow k_{s}^{\times} \rightarrow k_{s}^{\times} \rightarrow 0 .
$$

We can then get that $H^{2}\left(k, \mu_{n}\right) \simeq(\operatorname{Br} k)[n]$, where $(\operatorname{Br} k)[n]$ denotes the elements in $\operatorname{Br} k$ that are n-torsion.

3 Tsen's theorem

Definition 3.1. Let k be a field. Then k is called C_{1} if and only if every homogeneous polynomial $f\left(x_{1}, \cdots, x_{n}\right)$ of degree $d>0$ in n variables with $n>d$ has a nontrivial zero in k^{n}.

Proposition 3.2. If k is C_{1}, then $\operatorname{Br} k=0$.
Proof. Let D be a finite-dimensional central division algebra over k, so $[D: k]=r^{2}$ for some $r \geq 1$. An associated reduced norm form is of degree r in r^{2} variables and has no nontrivial zero. This contradicts the C_{1} property unless $r=1$. This holds for all D, so $\operatorname{Br} k=0$.

Theorem 3.3 (Tsen). If L is a the function field of a curve over an algebraically closed field k (that is, L is a finitely generated extension of k of transcendence degree 1), then L is C_{1}.

Proof. First consider the case where L is purely transcendental, i.e. $L=k(t)$. Let $f \in$ $L\left[x_{1}, \cdots, x_{n}\right]$ be a homogeneous polynomial of degree $d>0$, where $n>d$. Multiplying f by a polynomial in $k[t]$ to clear denominators, we may assume that f has coefficients in $k[t]$. Let m be the maximum of the degrees of these coefficients. We use the method of undetermined coefficients. Choose $s \in \mathbb{Z}_{>0}$ large (later we will say how large), introduce new variables $y_{i j}$ with $1 \leq i \leq n$ and $0 \leq j \leq s$, and substitute

$$
x_{i}=\sum_{j=0}^{s} y_{i j} t^{j}
$$

for all i into f, so that

$$
f\left(x_{1}, \cdots, x_{n}\right)=F_{0}+F_{1} t+\cdots+F_{d s+m} t^{d s+m}
$$

where each $F_{l} \in k\left[\left\{y_{i j}\right\}\right]$ is a homogeneous polynomial of degree d in $n(s+1)$ variables. Because $n>d$,

$$
n(s+1)>d s+m+1
$$

holds for sufficiently large s and k is algebraically closed, the projective dimension theorem implies that the F_{l} have a nontrivial common zero over k. This means that f has a nontrivial zero over $k[t]$, hence over $k(t)$.

Then it suffices to prove that if L is algebraic over $k(t)$, then L is C_{1}. Let $f \in L\left[x_{1}, \cdots, x_{n}\right]$ be a homogeneous polynomial of degree $d>0$ where $n>d$. Since L is algebraic over $k(t)$, the coefficients of f generate a finite extension of k. Thus we can suppose that L is a finite extension over k. Choose a basis e_{1}, \cdots, c_{s} of L over $k(t)$. Introduce new variables $y_{i j}$ and substitute

$$
x_{i}=\sum_{j=0}^{s} y_{i j} e^{j}
$$

for all i into f, so that

$$
f\left(x_{1}, \cdots, x_{n}\right)=F_{1} e_{1}+\cdots+F_{s} e_{s},
$$

where each $F_{l} \in k\left[\left\{y_{i j}\right\}\right]$ is a homogeneous polynomial of degree d in $s n$ variables. Now it suffices to find in $k(t)$ a nontrivial zero of the homogeneous polynomial $g\left(y_{i j}\right):=N_{L / k}(f)$, which is of degree $s d$ in $s n$ variables. Since $n>d$ and $k(t)$ is C_{1}, we have the desired result.

