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We aim to prove Lemma 4.5 of XI, [3]:

Lemma 0.1. If¢ € HY(X., F) and v € X = X(C). Then there exists an étale
morphism X' — X whose image containing x such that the image of § in H1(X/,, F)
is zero.

Firstly, the problem is Zarisiki local since open immersions are étale. We can as-
sume X is an Artin neighborhood of x since such a (Zariski) neighborhood exists by
Proposition 3.3 of XI, [3], that is there is a sequence of fibrations:

X=X,, - ,Xo=Spec(C)

where for each 0 < 7 < n — 1, there is a morphism m; : X;y; — X; which is an
elementary fibration. Let 7 = 71 (X (C), ) be the fundamental group of 71 (X (C), x).
We will prove that X (C) is a K (7, 1) space. We now give the definition of K (7, 1).

1 K(m1)

Let Y be a (good) connected topology space (for example, a connected manifold)
and F' be a local system (locally constant sheaf of abelian groups) on Y. Lety € Y
be a point. Then the monodromy actions equip fiber F,, with a structure of a (right)
module of 71(Y,y). This gives a functor from the category of local systems on Y’
to the category of 7 (Y, y)-modules. The functor induces an equivalence of the two
categories. If M is a 71 (Y, y)-module, we let s be the corresponding local system
with fiber Fir,,, &~ M as 71 (Y, y)-modules. Since M™ YY) = (Y, Far), we can con-
sider derived functors of I'(Y, —) in the category of local systems (which is equivalent
to 71 (Y, y)-modules) and category of sheaves on Y. By the formalism of universal
o-functors, we have natural morphisms of cohomology groups:

p' H'(m(Y,y), M) — H'(Y, Fur)
for any ¢ > 0. These morphisms are not necessarily isomorphisms. Let 7 be a group.

Definition 1.1. A connected topological space Y is called Eilenberg-Maclane of type
K(m, 1) if m(Y) =~ 7 and homotopy group 7;(Y') is trivial for any i > 2.



Proposition 1.2. Y is K(m1(Y,y), 1) if and only if the morphism p* above is an iso-
morphism for any i and any 71 (Y, y)-module M.

Proof Letp : ¥ — Y be the universal cover of Y. Assume that Y is K (71 (Y, y), 1).
Then 7;(Y) ~ 7;(X) = 0 when i > 2. By Hurewicz theorem, which asserts that the
first non-trivial homotopy group and homology group are isomorphic (if 71 is trivial),
we get H;(Y,Z) = 0 for any 7 > 1. If F is an arbitrary local system over Y, p*F
is constant since Y is simply connected. Then H i(f/, p*F) = 0 for any 7 > 1 by the

universal coefficient theorem. We have a (Hoschild-Serre) spectral sequence:
B} = HP(my(Y,y), HU(Y ,.p"F)) = HP*(Y, F).

Hence the spectral sequence degenerates and p’ are isomorphisms.

(The spectral sequence is a Grothendieck spectral sequence associated to func-
tors I'(Y, p*(—)) from the category of sheaves over Y to the category of 71 (Y, y)-
modules and (—)™(Y'¥) from the category of m;(Y,%)-modules to the category of
abelian groups. T'(Y, p*(—)) maps an injective sheaf I to an acyclic 7 (Y, y)-module
since the functor M +— Homg, (v, (M, r(Y,p*l)) = Hom(Mg,p* )™ (¥v) =
Hom(Fyy, I) is exact.)

Conversely, assume p’ are isomorphisms. Let Zs be the constant sheaf over Y
with coefficient in Z. Then p,Zy is a local system over Y. We have H 1(17, Ly) ~
HY(Y,p.Zy) ~ H'(m1(Y,y), (p«Zy)y) = 0if i > 1. By Hurewicz theorem again,
Yis K (m,1). Then the same holds for Y since Y and Y have same higher homotopy
groups. O

Proposition 1.3. If x € X such that X is an Artin neighborhood of x over Spec(C),
then X (C) is K(m (X(C),x),1) and 7 (X (C), x) is a succession of extensions of
free groups of finite type.

Proof By hypotheses, there is a sequence of fibrations:
X=X,, - ,Xo=Spec(C)

and foreach0 <i¢ <n—1,m : X;41 — X; is an elementary fibration. By induction,
we only need to show if 7 : X — S is an elementary fibration and S is K (r, 1) with
required fundamental group, then so is X. By the definition of elementary fibrations,
there is an embedding j : X — X of S-schemes, with complement Y — X of X in
X finite étale over S, such that X is projective smooth over S with fibers geometrically
connected irreducible of dimension 1. Then X (C) is a locally trivial (topological) fiber
bundle over S(C) with fiber I, where F is topologically a connected compact surface
with a non-empty set of points removed (we can use Ehresmann’s theorem to show that
X (C) is alocally trivial fiber bundle over S(C) firstly). Since fiber bundles are Serre
fibrations, we have a long exact sequence of fibration F' — X (C) — S(C):

oo m(F) = mi(X(C) =» mi(S(C) — -

To conclude, we just need to recall elementary facts that F' is a K (r, 1) and its funda-
mental group is free of finite type. O



2  Good groups

If G is an abstract group, its profinite completion G : l'qug,[G: H]<ocG/H ,
where H runs through all finite index normal subgroups of G, is a profinite group.
If M is a (discrete) finite G- module, the cohomology of M in the category of continu-
ous G-modules is given by H' (G M) = iy gc,jG:m) <o H Y(G/H, M*™). Any such
M is naturally a G-module. Thus we have natural morphisms of cohomology groups
(by formalism of §-functors)

HY(G,M) —» H'(G, M)
fori > 0.

Definition 2.1. A group G is called good if for any finite G-module M, the morphism
HY(G,M) — H(G, M) is an isomophism for any i > 0.

Proposition 2.2 (Charpter 1, 2.6, Exercise 2, [4]]). If G is a succession of extensions of
[free groups of finite type, then G is good.

We firstly show that Proposition [2.2]implies Lemma [0.1]

Proof of Lemma[0.1] Assume £ € H1(X ., F) and « € X, = X(C). By Proposition
[1.3]and Proposition 2.2} X (C) is K (m,1) and 7 := m (X (C), z) is good. Thus, we
have isomophisms of cohomology groups

HY(X(C),F) ~ H(m, F;) ~ HU(T, Fy) = iy ar (1) <oo H (7 H, F}').

Assume the image of ¢ in the last term lies in H(7/H, FH) for some H. By the
equivalence of finite étale sites over X and X (C), or equivalently, 71 (X, x) is the
profinite completion of 71 (X (C), x), we can assume H corresponds to a finite étale
cover X' of X (then a finite étale cover X'(C) of X (C)) by the Galois correspondence.
Letp: X’ — X be the covering map. The image of ¢ under the map H'(w/H, F1) —
H'(H, F,) is zero when i > 1, hence the image of £ in H*(X’(C), p* F') under maps

Hi(x/H,FH) - H'(H,F,) - H(X'(C),p*F)
is zero. O

We now do the exercise Proposition[2.2]in Serre’s book. Let G be a group.

Lemma 2.3. The following conditions are equivalent:

(1) H{(G,M) — HY(G, M) is a bijection for any q > 0 and any finite discrete
G-module M. R

(2) for any g > 1, any finite discrete G-module M and any v € HY(G, M), there
exists a finite index subgroup Gy of G, such that the image of x in H1(Gq, M) is zero.

Proof (1)=(2): we have HY(G, M) = limp ¢ (c:m<0c H(G/H, M) and the im-
age of H4(G/H, M*)in H(H, M) is zero for any H and q > 1.



(2)=>(1): induction on ¢. ¢ = 0 is automatic. Assume H%(G, M) — H49(G, M) is
an isomorphism for ¢ < n — 1. Let « be an arbitrary element of H4(G, M'). Assume
the image of x in H4(Gg, M) is zero. We have unit morphism M — Indg0 M, where
IndgoM is the induced representation. Then the image of z in HY(G, InngM ) =
H%(Gy, M) is zero. We have long exact sequences associated with short exact se-
quence 0 — M — Ind& M — (Ind§ M)/M — 0:

H9Y(G, (Ind§, M)/ M) ———— HY(G,M) — HYG,ndS, M) —— H(G, (Ind%, M)/M)

l J I l

HY(G, (Indg M)/M) ——— HYG,M) — HYG,Indg M) —— HYG, (IndG M)/M)

Since Gy has finite index in G, (Indg0 M)/M is a finite G-module. By the induction
hypothesis, H4~(G, (Ind$, M)/M) — H (G, (IndS, M)/M) is an isomophism.
Chasing diagram, we see x lies in the image of map H q(@, M) — HYG,M). Since
x is arbitrary, H?¢ (é , M) — H(G, M) is a surjection. To prove the injectivity, let z €
H?(G /Gy, M%) such that its image in H4(G, M) is zero. We consider the same dia-
gram as above. The image of z in H? (@7 M) lies in the image of H9~* (@7 (InngM)/M).
A diagram chasing and the induction hypotheses for ¢ — 1 on modules Indg oM and
(IndgO M) /M show that the image of x in HY(G, M) is zero. O

Lemma 2.4. Let G be a discrete group and Gy be a subgroup of G of finite index.
Then G is good if and only if Gg is good.

Proof Assume G is good. Let M be a arbitrary finite G-module. If § € HY(G, M), q >
0. By Lemmal[2.3] the image of & in H%(Go, M) will vanish if restrict to a finite index
subgroup of G, which is also a finite index subgroup of G. By Lemma[2.3] G is good.
Assume G is good. For any finite Gy-module M, InngM is also finite. Then
H9(Go, M) = HI(G,Ind$, M) ~ H(G,nd% M) = H9(Go, M). Thus Gy is also
good. O

Lemma 2.5. If G is a good group and F is an extension of G by a group N such that
N is finite, then there exists a subgroup Eq of E of finite index such that EyNN = {e},
where e is the identity element.

Proof Let I be the centralizer of IV in E. Consider the morphism of groups £ —
Aut(N) given by conjugation of elements of £ on N. We see the kernel is I. Since
N is finite, I has finite index in E. Then I /(I N N) is isomorphic to a finite index
subgroup of G. By Lemma[2.4] I /(I N N) is good. The exact sequence

0—=INN—=I—-I/INN)—=0

is a central extension of I /(I N N) by I. Classes of central extensions are classified by
the cohomology group
H*(I/(INN),INN).



Since I/(I N N) is good, by Lemma[2.3] the extension above splits when restricted to
a finite index subgroup of I /(I N N), which, by the splitness, gives out a finite index
subgroup Ej of I such that EgNN = {e}. Moreover, Ej is also a finite index subgroup
of E. O

Lemma 2.6. If N is a finitely generated group and E is an extension of a group G by
N. Assume G is good, then any finite index subgroup of N contains a finite subgroup
of the form N N Ey, where Ey is a finite index subgroup of E. Hence we have an exact
sequence of R R R

0->N—-E—->G—0.

Proof Assume N is a finite index subgroup of N. Replace N by Ngen/n,gN g L
we can assume Ny is normal in V. Since N is finitely generated, the number of (nor-
mal) subgroups of N with fixed index is finite. (Assume index n is fixed. A normal
subgroup N’ of index n gives out a morphism N — S,, by the action of N on the
cosets N/N' ,where S, is the n-th symmetric group. N' is the kernel of the morphism.
Since N is finitely generated, the number of morphism from N to S,, is finite.) Thus
the set {gNog~t|g € E} is finite and Nye gNog " is a normal subgroup of E which
has finite index in N. Hence we can assume N is normal in £. Apply Lemma[2.5]to

extension
0— N/Ny — E/Ny — G — 0,

we can find a finite index subgroup E{) of E /Ny such that E) N (N/Ny) = {e}. Now
let E be the pre-image of Ej) in E. Then Ey N N = Nj. U

Lemma 2.7. If N is a finitely generated group and E is an extension of a group G
by N. Assume G, N is good and H1(N, M) is finite for any finite N-module M and
q > 0. Then E is also good.

Proof Since we have exact sequences

0O—-—N—-FEF—->G—0
0-N—-E—G-— 0,
we have associated (Hoschild-Serre) spectral sequences, for any finite £-module M,

By = HP(G, HY(N,M)) = HPt(E,M)

| J

E5? = HP(G,HY(N, M)) = HPYI(E,M)

By assumptions, the E5 terms of the two spectral sequences are isomorphic. Hence
the two spectral sequences are isomorphic and HY(E, M) ~ H9(E, M) for any M, q.
Thus E is good. O

Proof of Proposition By the lemma above, we only need to show that a free group
of finite type is good and its cohomology groups of finite modules are finite. Let G be



a free group of finite type. We know that a finite group has cohomological dimension
1. (We have a free resolution of trivial G-module Z:

0 I = Z[G) 25 7 - 0,
where I is the free Z[G]-module generated by g;—1,i = 1, -+ , s, where (g1, , gs)
is a choice of free generators of G' ) Let M be a finite G-module. If ¢ = 0, H° (@ M) =
HO(G,M) = M€ is finite. If ¢ = 1, the morphism H*(G, M) — H(G, M) is in
fact an isomophism for any G (even G is not free) and finite module M. If Gy is a
normal finite index subgroup of GG, we have a well-known exact sequence (from the
Hoschild-Serre spectral sequence)

0— HY(G/Goy, M) — H*(G,M) — --- .

We get an injectivity H* (G, M) — H'(G, M). Now we prove surjectivity. H'(G, M)
are just classes of cross homomorphisms:f : G — M, f(gh) = gf(h) + f(g). If
feZYG,M),let K = {g|f(g) = 0}. Then K is a subgroup of G and it has finite
index (f(gh) = f(g) ifandonly if h € K, so f : G/K — M). Let Ky be a finite
index subgroup of K which is normal in G and take L. = Ky N G, where Gy is the
normal subgroup of elements of G which act trivially on M. Then f comes from an
element of Z1(G/L, ML). Hence f lies in the image of H'(G, M). Since f is arbi-
trary, HY(G, M) — H*(G, M) is surjective. Now @ is finitely generated and free, a
cross morphism is determined by its value on generators of G, so there are only a finite
number of cross morphisms. Hence H! is finite. If q > 2, HY(G, M) = 0 for any
finite module M. The condition (2) in Lemma [2.3]is satisfied for G. Hence G is good
and HY1(G,M) = HY(G,M) =0if g > 2. O

Remark 2.8. The Stalling-Swan theorem asserts that a finitely generated group has
cohomological dimension 1 if and only if it is free.

Remark 2.9. The comparisons we have studied are comparisons of cohomology with
respect to different topoi. For example, in algebraic setting, let X be a connected,
quasi-compact and quasi-separated scheme and let Xy, be the topos corresponding to
finite étale covers of X. Let x be a geometric point of X and w1 (X, x) be the étale
Sfundamental group. The classifying topos B (X, x) is the category of continuous
(X, x)-sets. Then we have an equivalence of topoi Xss ~ Bmi(X,x) and for any
sheaf of abelian group F over Xz, H1(Bm1 (X, x), Fy) ~ HY( X4, F) for any q. See
[2|] and Chapter 2 of [1|]
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