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We aim to prove Lemma 4.5 of XI, [3]:

Lemma 0.1. If ξ ∈ Hq(Xcl, F ) and x ∈ Xcl = X(C). Then there exists an étale
morphism X ′ → X whose image containing x such that the image of ξ in Hq(X ′cl, F )
is zero.

Firstly, the problem is Zarisiki local since open immersions are étale. We can as-
sume X is an Artin neighborhood of x since such a (Zariski) neighborhood exists by
Proposition 3.3 of XI, [3], that is there is a sequence of fibrations:

X = Xn, · · · , X0 = Spec(C)

where for each 0 ≤ i ≤ n − 1, there is a morphism πi : Xi+1 → Xi which is an
elementary fibration. Let π = π1(X(C), x) be the fundamental group of π1(X(C), x).
We will prove that X(C) is a K(π, 1) space. We now give the definition of K(π, 1).

1 K(π, 1)

Let Y be a (good) connected topology space (for example, a connected manifold)
and F be a local system (locally constant sheaf of abelian groups) on Y . Let y ∈ Y
be a point. Then the monodromy actions equip fiber Fy with a structure of a (right)
module of π1(Y, y). This gives a functor from the category of local systems on Y
to the category of π1(Y, y)-modules. The functor induces an equivalence of the two
categories. If M is a π1(Y, y)-module, we let FM be the corresponding local system
with fiber FM,y 'M as π1(Y, y)-modules. Since Mπ1(Y,y) = Γ(Y, FM ), we can con-
sider derived functors of Γ(Y,−) in the category of local systems (which is equivalent
to π1(Y, y)-modules) and category of sheaves on Y . By the formalism of universal
δ-functors, we have natural morphisms of cohomology groups:

ρi : Hi(π1(Y, y),M)→ Hi(Y, FM )

for any i ≥ 0. These morphisms are not necessarily isomorphisms. Let π be a group.

Definition 1.1. A connected topological space Y is called Eilenberg-Maclane of type
K(π, 1) if π1(Y ) ' π and homotopy group πi(Y ) is trivial for any i ≥ 2.
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Proposition 1.2. Y is K(π1(Y, y), 1) if and only if the morphism ρi above is an iso-
morphism for any i and any π1(Y, y)-module M .

Proof Let p : Ỹ → Y be the universal cover of Y . Assume that Y is K(π1(Y, y), 1).
Then πi(Ỹ ) ' πi(X̃) = 0 when i ≥ 2. By Hurewicz theorem, which asserts that the
first non-trivial homotopy group and homology group are isomorphic (if π1 is trivial),
we get Hi(Ỹ ,Z) = 0 for any i ≥ 1. If F is an arbitrary local system over Y , p∗F
is constant since Ỹ is simply connected. Then Hi(Ỹ , p∗F ) = 0 for any i ≥ 1 by the
universal coefficient theorem. We have a (Hoschild-Serre) spectral sequence:

Ep,q2 = Hp(π1(Y, y), Hq(Ỹ , p∗F ))⇒ Hp+q(Y, F ).

Hence the spectral sequence degenerates and ρi are isomorphisms.
(The spectral sequence is a Grothendieck spectral sequence associated to func-

tors Γ(Ỹ , p∗(−)) from the category of sheaves over Y to the category of π1(Y, y)-
modules and (−)π1(Y,y) from the category of π1(Y, y)-modules to the category of
abelian groups. Γ(Ỹ , p∗(−)) maps an injective sheaf I to an acyclic π1(Y, y)-module
since the functor M 7→ Homπ1(Y,y)(M,Γ(Ỹ , p∗I)) = Hom(M Ỹ , p

∗I)π1(Y,y) =
Hom(FM , I) is exact.)

Conversely, assume ρi are isomorphisms. Let ZỸ be the constant sheaf over Ỹ
with coefficient in Z. Then p∗ZỸ is a local system over Y . We have Hi(Ỹ ,ZỸ ) '
Hi(Y, p∗ZỸ ) ' Hi(π1(Y, y), (p∗ZỸ )y) = 0 if i ≥ 1. By Hurewicz theorem again,
Ỹ is K(π, 1). Then the same holds for Y since Y and Ỹ have same higher homotopy
groups.

Proposition 1.3. If x ∈ X such that X is an Artin neighborhood of x over Spec(C),
then X(C) is K(π1(X(C), x), 1) and π1(X(C), x) is a succession of extensions of
free groups of finite type.

Proof By hypotheses, there is a sequence of fibrations:

X = Xn, · · · , X0 = Spec(C)

and for each 0 ≤ i ≤ n− 1, πi : Xi+1 → Xi is an elementary fibration. By induction,
we only need to show if π : X → S is an elementary fibration and S is K(π, 1) with
required fundamental group, then so is X . By the definition of elementary fibrations,
there is an embedding j : X ↪→ X of S-schemes, with complement Y ↪→ X of X in
X finite étale over S, such thatX is projective smooth over S with fibers geometrically
connected irreducible of dimension 1. ThenX(C) is a locally trivial (topological) fiber
bundle over S(C) with fiber F , where F is topologically a connected compact surface
with a non-empty set of points removed (we can use Ehresmann’s theorem to show that
X(C) is a locally trivial fiber bundle over S(C) firstly). Since fiber bundles are Serre
fibrations, we have a long exact sequence of fibration F → X(C)→ S(C):

· · · → πi(F )→ πi(X(C))→ πi(S(C))→ · · · .

To conclude, we just need to recall elementary facts that F is a K(π, 1) and its funda-
mental group is free of finite type.
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2 Good groups

If G is an abstract group, its profinite completion Ĝ : lim←−HCG,[G:H]<∞G/H ,
where H runs through all finite index normal subgroups of G, is a profinite group.
If M is a (discrete) finite Ĝ-module, the cohomology of M in the category of continu-
ous Ĝ-modules is given by Hi(Ĝ,M) = lim−→HCG,[G:H]<∞H

i(G/H,MH). Any such
M is naturally a G-module. Thus we have natural morphisms of cohomology groups
(by formalism of δ-functors)

Hi(Ĝ,M)→ Hi(G,M)

for i ≥ 0.

Definition 2.1. A group G is called good if for any finite G-module M , the morphism
Hi(Ĝ,M)→ Hi(G,M) is an isomophism for any i ≥ 0.

Proposition 2.2 (Charpter 1, 2.6, Exercise 2, [4]). If G is a succession of extensions of
free groups of finite type, then G is good.

We firstly show that Proposition 2.2 implies Lemma 0.1

Proof of Lemma 0.1 Assume ξ ∈ Hq(Xcl, F ) and x ∈ Xcl = X(C). By Proposition
1.3 and Proposition 2.2, X(C) is K(π, 1) and π := π1(X(C), x) is good. Thus, we
have isomophisms of cohomology groups

Hq(X(C), F ) ' Hq(π, Fx) ' Hq(π̂, Fx) = lim−→HCπ,[π:H]<∞H
i(π/H,FHx ).

Assume the image of ξ in the last term lies in Hi(π/H,FHx ) for some H . By the
equivalence of finite étale sites over X and X(C), or equivalently, π1(X,x) is the
profinite completion of π1(X(C), x), we can assume H corresponds to a finite étale
coverX ′ ofX (then a finite étale coverX ′(C) ofX(C)) by the Galois correspondence.
Let p : X ′ → X be the covering map. The image of ξ under the mapHi(π/H,FHx )→
Hi(H,Fx) is zero when i ≥ 1, hence the image of ξ in Hi(X ′(C), p∗F ) under maps

Hi(π/H,FHx )→ Hi(H,Fx)→ Hi(X ′(C), p∗F )

is zero.

We now do the exercise Proposition 2.2 in Serre’s book. Let G be a group.

Lemma 2.3. The following conditions are equivalent:
(1) Hq(Ĝ,M) → Hq(G,M) is a bijection for any q ≥ 0 and any finite discrete

Ĝ-module M .
(2) for any q ≥ 1, any finite discrete Ĝ-module M and any x ∈ Hq(G,M), there

exists a finite index subgroup G0 of G, such that the image of x in Hq(G0,M) is zero.

Proof (1)⇒(2): we have Hq(Ĝ,M) = lim−→HCG,[G:H]<∞H
q(G/H,MH) and the im-

age of Hq(G/H,MH) in Hq(H,M) is zero for any H and q ≥ 1.
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(2)⇒(1): induction on q. q = 0 is automatic. Assume Hq(Ĝ,M)→ Hq(G,M) is
an isomorphism for q ≤ n − 1. Let x be an arbitrary element of Hq(G,M). Assume
the image of x in Hq(G0,M) is zero. We have unit morphism M → IndGG0

M , where
IndGG0

M is the induced representation. Then the image of x in Hq(G, IndGG0
M) =

Hq(G0,M) is zero. We have long exact sequences associated with short exact se-
quence 0→M → IndGG0

M → (IndGG0
M)/M → 0:

Hq−1(Ĝ, (IndGG0
M)/M) Hq(Ĝ,M) Hq(Ĝ, IndGG0

M) Hq(Ĝ, (IndGG0
M)/M)

Hq−1(G, (IndGG0
M)/M) Hq(G,M) Hq(G, IndGG0

M) Hq(G, (IndGG0
M)/M)

Since G0 has finite index in G, (IndGG0
M)/M is a finite G-module. By the induction

hypothesis, Hq−1(Ĝ, (IndGG0
M)/M) → Hq−1(G, (IndGG0

M)/M) is an isomophism.
Chasing diagram, we see x lies in the image of map Hq(Ĝ,M) → Hq(G,M). Since
x is arbitrary,Hq(Ĝ,M)→ Hq(G,M) is a surjection. To prove the injectivity, let x ∈
Hq(G/G0,M

G0) such that its image in Hq(G,M) is zero. We consider the same dia-
gram as above. The image of x inHq(Ĝ,M) lies in the image ofHq−1(Ĝ, (IndGG0

M)/M).
A diagram chasing and the induction hypotheses for q − 1 on modules IndGG0

M and
(IndGG0

M)/M show that the image of x in Hq(Ĝ,M) is zero.

Lemma 2.4. Let G be a discrete group and G0 be a subgroup of G of finite index.
Then G is good if and only if G0 is good.

Proof AssumeG0 is good. LetM be a arbitrary finiteG-module. If ξ ∈ Hq(G,M), q >
0. By Lemma 2.3, the image of ξ in Hq(G0,M) will vanish if restrict to a finite index
subgroup of G0, which is also a finite index subgroup of G. By Lemma 2.3, G is good.

Assume G is good. For any finite G0-module M , IndGG0
M is also finite. Then

Hq(G0,M) = Hq(G, IndGG0
M) ' Hq(Ĝ, IndGG0

M) = Hq(Ĝ0,M). Thus G0 is also
good.

Lemma 2.5. If G is a good group and E is an extension of G by a group N such that
N is finite, then there exists a subgroupE0 ofE of finite index such thatE0∩N = {e},
where e is the identity element.

Proof Let I be the centralizer of N in E. Consider the morphism of groups E →
Aut(N) given by conjugation of elements of E on N . We see the kernel is I . Since
N is finite, I has finite index in E. Then I/(I ∩ N) is isomorphic to a finite index
subgroup of G. By Lemma 2.4, I/(I ∩N) is good. The exact sequence

0→ I ∩N → I → I/(I ∩N)→ 0

is a central extension of I/(I ∩N) by I . Classes of central extensions are classified by
the cohomology group

H2(I/(I ∩N), I ∩N).
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Since I/(I ∩N) is good, by Lemma 2.3, the extension above splits when restricted to
a finite index subgroup of I/(I ∩ N), which, by the splitness, gives out a finite index
subgroupE0 of I such thatE0∩N = {e}. Moreover,E0 is also a finite index subgroup
of E.

Lemma 2.6. If N is a finitely generated group and E is an extension of a group G by
N . Assume G is good, then any finite index subgroup of N contains a finite subgroup
of the form N ∩E0, where E0 is a finite index subgroup of E. Hence we have an exact
sequence of

0→ N̂ → Ê → Ĝ→ 0.

Proof Assume N0 is a finite index subgroup of N . Replace N by ∩g∈N/N0
gNg−1,

we can assume N0 is normal in N . Since N is finitely generated, the number of (nor-
mal) subgroups of N with fixed index is finite. (Assume index n is fixed. A normal
subgroup N ′ of index n gives out a morphism N → Sn by the action of N on the
cosets N/N ′,where Sn is the n-th symmetric group. N ′ is the kernel of the morphism.
Since N is finitely generated, the number of morphism from N to Sn is finite.) Thus
the set {gN0g

−1|g ∈ E} is finite and ∩g∈EgN0g
−1 is a normal subgroup of E which

has finite index in N . Hence we can assume N0 is normal in E. Apply Lemma 2.5 to
extension

0→ N/N0 → E/N0 → G→ 0,

we can find a finite index subgroup E′0 of E/N0 such that E′0 ∩ (N/N0) = {e}. Now
let E0 be the pre-image of E′0 in E. Then E0 ∩N = N0.

Lemma 2.7. If N is a finitely generated group and E is an extension of a group G
by N . Assume G,N is good and Hq(N,M) is finite for any finite N -module M and
q ≥ 0. Then E is also good.

Proof Since we have exact sequences

0→ N → E → G→ 0

0→ N̂ → Ê → Ĝ→ 0,

we have associated (Hoschild-Serre) spectral sequences, for any finite E-module M ,

Epq2 = Hp(Ĝ,Hq(N̂ ,M)) ⇒ Hp+q(Ê,M)

Epq2 = Hp(G,Hq(N,M)) ⇒ Hp+q(E,M)

By assumptions, the E2 terms of the two spectral sequences are isomorphic. Hence
the two spectral sequences are isomorphic and Hq(Ê,M) ' Hq(E,M) for any M, q.
Thus E is good.

Proof of Proposition 2.2 By the lemma above, we only need to show that a free group
of finite type is good and its cohomology groups of finite modules are finite. Let G be
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a free group of finite type. We know that a finite group has cohomological dimension
1. (We have a free resolution of trivial G-module Z:

0→ IG → Z[G]
g→1−→ Z→ 0,

where IG is the free Z[G]-module generated by gi−1, i = 1, · · · , s, where (g1, · · · , gs)
is a choice of free generators ofG ) LetM be a finiteG-module. If q = 0,H0(Ĝ,M) =

H0(G,M) = MG is finite. If q = 1, the morphism H1(Ĝ,M) → H1(G,M) is in
fact an isomophism for any G (even G is not free) and finite module M . If G0 is a
normal finite index subgroup of G, we have a well-known exact sequence (from the
Hoschild-Serre spectral sequence)

0→ H1(G/G0,M)→ H1(G,M)→ · · · .

We get an injectivityH1(Ĝ,M) ↪→ H1(G,M). Now we prove surjectivity. H1(G,M)
are just classes of cross homomorphisms:f : G → M,f(gh) = gf(h) + f(g). If
f ∈ Z1(G,M), let K = {g|f(g) = 0}. Then K is a subgroup of G and it has finite
index (f(gh) = f(g) if and only if h ∈ K, so f : G/K ↪→ M ). Let K0 be a finite
index subgroup of K which is normal in G and take L = K0 ∩ G0, where G0 is the
normal subgroup of elements of G which act trivially on M . Then f comes from an
element of Z1(G/L,ML). Hence f lies in the image of H1(Ĝ,M). Since f is arbi-
trary, H1(Ĝ,M) → H1(G,M) is surjective. Now G is finitely generated and free, a
cross morphism is determined by its value on generators of G, so there are only a finite
number of cross morphisms. Hence H1 is finite. If q ≥ 2, Hq(G,M) = 0 for any
finite module M . The condition (2) in Lemma 2.3 is satisfied for G. Hence G is good
and Hq(Ĝ,M) = Hq(G,M) = 0 if q ≥ 2.

Remark 2.8. The Stalling-Swan theorem asserts that a finitely generated group has
cohomological dimension 1 if and only if it is free.

Remark 2.9. The comparisons we have studied are comparisons of cohomology with
respect to different topoi. For example, in algebraic setting, let X be a connected,
quasi-compact and quasi-separated scheme and let Xfét be the topos corresponding to
finite étale covers of X . Let x be a geometric point of X and π1(X,x) be the étale
fundamental group. The classifying topos Bπ1(X,x) is the category of continuous
π1(X,x)-sets. Then we have an equivalence of topoi Xfét ' Bπ1(X,x) and for any
sheaf of abelian group F over Xfét, Hq(Bπ1(X,x), Fx) ' Hq(Xfét, F ) for any q. See
[2] and Chapter 2 of [1]
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