Artin's comparison theorem via $K(\pi, 1)$

Zhixiang Wu

May 5, 2019

We aim to prove Lemma 4.5 of XI, [3]:

Lemma 0.1. If $\xi \in H^q(X_{cl}, F)$ and $x \in X_{cl} = X(\mathbb{C})$. Then there exists an étale morphism $X' \to X$ whose image containing x such that the image of ξ in $H^q(X'_{cl}, F)$ is zero.

Firstly, the problem is Zarisiki local since open immersions are étale. We can assume X is an Artin neighborhood of x since such a (Zariski) neighborhood exists by Proposition 3.3 of XI, [3], that is there is a sequence of fibrations:

$$X = X_n, \cdots, X_0 = \operatorname{Spec}(\mathbb{C})$$

where for each $0 \le i \le n-1$, there is a morphism $\pi_i : X_{i+1} \to X_i$ which is an elementary fibration. Let $\pi = \pi_1(X(\mathbb{C}), x)$ be the fundamental group of $\pi_1(X(\mathbb{C}), x)$. We will prove that $X(\mathbb{C})$ is a $K(\pi, 1)$ space. We now give the definition of $K(\pi, 1)$.

1 $K(\pi, 1)$

Let Y be a (good) connected topology space (for example, a connected manifold) and F be a local system (locally constant sheaf of abelian groups) on Y. Let $y \in Y$ be a point. Then the monodromy actions equip fiber F_y with a structure of a (right) module of $\pi_1(Y, y)$. This gives a functor from the category of local systems on Y to the category of $\pi_1(Y, y)$ -modules. The functor induces an equivalence of the two categories. If M is a $\pi_1(Y, y)$ -module, we let F_M be the corresponding local system with fiber $F_{M,y} \simeq M$ as $\pi_1(Y, y)$ -modules. Since $M^{\pi_1(Y,y)} = \Gamma(Y, F_M)$, we can consider derived functors of $\Gamma(Y, -)$ in the category of local systems (which is equivalent to $\pi_1(Y, y)$ -modules) and category of sheaves on Y. By the formalism of universal δ -functors, we have natural morphisms of cohomology groups:

$$\rho^i: H^i(\pi_1(Y, y), M) \to H^i(Y, F_M)$$

for any $i \ge 0$. These morphisms are not necessarily isomorphisms. Let π be a group.

Definition 1.1. A connected topological space Y is called Eilenberg-Maclane of type $K(\pi, 1)$ if $\pi_1(Y) \simeq \pi$ and homotopy group $\pi_i(Y)$ is trivial for any $i \ge 2$.

Proposition 1.2. *Y* is $K(\pi_1(Y, y), 1)$ if and only if the morphism ρ^i above is an isomorphism for any *i* and any $\pi_1(Y, y)$ -module *M*.

Proof Let $p: \tilde{Y} \to Y$ be the universal cover of Y. Assume that Y is $K(\pi_1(Y, y), 1)$. Then $\pi_i(\tilde{Y}) \simeq \pi_i(\tilde{X}) = 0$ when $i \ge 2$. By Hurewicz theorem, which asserts that the first non-trivial homotopy group and homology group are isomorphic (if π_1 is trivial), we get $H_i(\tilde{Y}, \mathbb{Z}) = 0$ for any $i \ge 1$. If F is an arbitrary local system over Y, p^*F is constant since \tilde{Y} is simply connected. Then $H^i(\tilde{Y}, p^*F) = 0$ for any $i \ge 1$ by the universal coefficient theorem. We have a (Hoschild-Serre) spectral sequence:

$$E_2^{p,q} = H^p(\pi_1(Y,y), H^q(Y,p^*F)) \Rightarrow H^{p+q}(Y,F).$$

Hence the spectral sequence degenerates and ρ^i are isomorphisms.

(The spectral sequence is a Grothendieck spectral sequence associated to functors $\Gamma(\tilde{Y}, p^*(-))$ from the category of sheaves over Y to the category of $\pi_1(Y, y)$ modules and $(-)^{\pi_1(Y,y)}$ from the category of $\pi_1(Y, y)$ -modules to the category of abelian groups. $\Gamma(\tilde{Y}, p^*(-))$ maps an injective sheaf I to an acyclic $\pi_1(Y, y)$ -module since the functor $M \mapsto \operatorname{Hom}_{\pi_1(Y,y)}(M, \Gamma(\tilde{Y}, p^*I)) = \operatorname{Hom}(\underline{M}_{\tilde{Y}}, p^*I)^{\pi_1(Y,y)} =$ $\operatorname{Hom}(F_M, I)$ is exact.)

Conversely, assume ρ^i are isomorphisms. Let $\underline{\mathbb{Z}}_{\widetilde{Y}}$ be the constant sheaf over \widetilde{Y} with coefficient in \mathbb{Z} . Then $p_*\underline{\mathbb{Z}}_{\widetilde{Y}}$ is a local system over Y. We have $H^i(\widetilde{Y},\underline{\mathbb{Z}}_{\widetilde{Y}}) \simeq H^i(Y,p_*\underline{\mathbb{Z}}_{\widetilde{Y}}) \simeq H^i(\pi_1(Y,y),(p_*\underline{\mathbb{Z}}_{\widetilde{Y}})_y) = 0$ if $i \ge 1$. By Hurewicz theorem again, \widetilde{Y} is $K(\pi,1)$. Then the same holds for Y since Y and \widetilde{Y} have same higher homotopy groups.

Proposition 1.3. If $x \in X$ such that X is an Artin neighborhood of x over $Spec(\mathbb{C})$, then $X(\mathbb{C})$ is $K(\pi_1(X(\mathbb{C}), x), 1)$ and $\pi_1(X(\mathbb{C}), x)$ is a succession of extensions of free groups of finite type.

Proof By hypotheses, there is a sequence of fibrations:

$$X = X_n, \cdots, X_0 = \operatorname{Spec}(\mathbb{C})$$

and for each $0 \le i \le n-1$, $\pi_i : X_{i+1} \to X_i$ is an elementary fibration. By induction, we only need to show if $\pi : X \to S$ is an elementary fibration and S is $K(\pi, 1)$ with required fundamental group, then so is X. By the definition of elementary fibrations, there is an embedding $j : X \to \overline{X}$ of S-schemes, with complement $Y \to \overline{X}$ of X in \overline{X} finite étale over S, such that \overline{X} is projective smooth over S with fibers geometrically connected irreducible of dimension 1. Then $X(\mathbb{C})$ is a locally trivial (topological) fiber bundle over $S(\mathbb{C})$ with fiber F, where F is topologically a connected compact surface with a non-empty set of points removed (we can use Ehresmann's theorem to show that $\overline{X}(C)$ is a locally trivial fiber bundle over $S(\mathbb{C})$ firstly). Since fiber bundles are Serre fibrations, we have a long exact sequence of fibration $F \to X(\mathbb{C}) \to S(\mathbb{C})$:

$$\cdots \to \pi_i(F) \to \pi_i(X(\mathbb{C})) \to \pi_i(S(\mathbb{C})) \to \cdots$$
.

To conclude, we just need to recall elementary facts that F is a $K(\pi, 1)$ and its fundamental group is free of finite type.

2 Good groups

If G is an abstract group, its profinite completion \hat{G} : $\lim_{H \triangleleft G, [G:H] < \infty} G/H$, where H runs through all finite index normal subgroups of \hat{G} , is a profinite group. If M is a (discrete) finite \hat{G} -module, the cohomology of M in the category of continuous \hat{G} -modules is given by $H^i(\hat{G}, M) = \lim_{H \triangleleft G, [G:H] < \infty} H^i(G/H, M^H)$. Any such M is naturally a G-module. Thus we have natural morphisms of cohomology groups (by formalism of δ -functors)

$$H^i(\widehat{G}, M) \to H^i(G, M)$$

for $i \ge 0$.

Definition 2.1. A group G is called good if for any finite G-module M, the morphism $H^i(\widehat{G}, M) \to H^i(G, M)$ is an isomophism for any $i \ge 0$.

Proposition 2.2 (Charpter 1, 2.6, Exercise 2, [4]). If G is a succession of extensions of free groups of finite type, then G is good.

We firstly show that Proposition 2.2 implies Lemma 0.1

Proof of Lemma 0.1 Assume $\xi \in H^q(X_{cl}, F)$ and $x \in X_{cl} = X(\mathbb{C})$. By Proposition 1.3 and Proposition 2.2, $X(\mathbb{C})$ is $K(\pi, 1)$ and $\pi := \pi_1(X(\mathbb{C}), x)$ is good. Thus, we have isomophisms of cohomology groups

$$H^q(X(\mathbb{C}), F) \simeq H^q(\pi, F_x) \simeq H^q(\widehat{\pi}, F_x) = \underline{\lim}_{H \triangleleft \pi, [\pi:H] < \infty} H^i(\pi/H, F_x^H).$$

Assume the image of ξ in the last term lies in $H^i(\pi/H, F_x^H)$ for some H. By the equivalence of finite étale sites over X and $X(\mathbb{C})$, or equivalently, $\pi_1(X, x)$ is the profinite completion of $\pi_1(X(\mathbb{C}), x)$, we can assume H corresponds to a finite étale cover X' of X (then a finite étale cover $X'(\mathbb{C})$ of $X(\mathbb{C})$) by the Galois correspondence. Let $p: X' \to X$ be the covering map. The image of ξ under the map $H^i(\pi/H, F_x^H) \to H^i(H, F_x)$ is zero when $i \ge 1$, hence the image of ξ in $H^i(X'(\mathbb{C}), p^*F)$ under maps

$$H^{i}(\pi/H, F_{x}^{H}) \to H^{i}(H, F_{x}) \to H^{i}(X'(\mathbb{C}), p^{*}F)$$

 \square

is zero.

We now do the exercise Proposition 2.2 in Serre's book. Let G be a group.

Lemma 2.3. The following conditions are equivalent:

(1) $H^q(\widehat{G}, M) \to H^q(G, M)$ is a bijection for any $q \ge 0$ and any finite discrete \widehat{G} -module M.

(2) for any $q \ge 1$, any finite discrete \widehat{G} -module M and any $x \in H^q(G, M)$, there exists a finite index subgroup G_0 of G, such that the image of x in $H^q(G_0, M)$ is zero.

Proof (1) \Rightarrow (2): we have $H^q(\widehat{G}, M) = \varinjlim_{H \triangleleft G, [G:H] < \infty} H^q(G/H, M^H)$ and the image of $H^q(G/H, M^H)$ in $H^q(H, M)$ is zero for any H and $q \ge 1$.

 $(2)\Rightarrow(1)$: induction on q. q = 0 is automatic. Assume $H^q(\widehat{G}, M) \to H^q(G, M)$ is an isomorphism for $q \leq n-1$. Let x be an arbitrary element of $H^q(G, M)$. Assume the image of x in $H^q(G_0, M)$ is zero. We have unit morphism $M \to \operatorname{Ind}_{G_0}^G M$, where $\operatorname{Ind}_{G_0}^G M$ is the induced representation. Then the image of x in $H^q(G, \operatorname{Ind}_{G_0}^G M) =$ $H^q(G_0, M)$ is zero. We have long exact sequences associated with short exact sequence $0 \to M \to \operatorname{Ind}_{G_0}^G M \to (\operatorname{Ind}_{G_0}^G M)/M \to 0$:

Since G_0 has finite index in G, $(\operatorname{Ind}_{G_0}^G M)/M$ is a finite G-module. By the induction hypothesis, $H^{q-1}(\widehat{G}, (\operatorname{Ind}_{G_0}^G M)/M) \to H^{q-1}(G, (\operatorname{Ind}_{G_0}^G M)/M)$ is an isomophism. Chasing diagram, we see x lies in the image of map $H^q(\widehat{G}, M) \to H^q(G, M)$. Since x is arbitrary, $H^q(\widehat{G}, M) \to H^q(G, M)$ is a surjection. To prove the injectivity, let $x \in H^q(G/G_0, M^{G_0})$ such that its image in $H^q(G, M)$ is zero. We consider the same diagram as above. The image of x in $H^q(\widehat{G}, M)$ lies in the image of $H^{q-1}(\widehat{G}, (\operatorname{Ind}_{G_0}^G M)/M)$. A diagram chasing and the induction hypotheses for q-1 on modules $\operatorname{Ind}_{G_0}^G M$ and $(\operatorname{Ind}_{G_0}^G M)/M$ show that the image of x in $H^q(\widehat{G}, M)$ is zero. \Box

Lemma 2.4. Let G be a discrete group and G_0 be a subgroup of G of finite index. Then G is good if and only if G_0 is good.

Proof Assume G_0 is good. Let M be a arbitrary finite G-module. If $\xi \in H^q(G, M), q > 0$. By Lemma 2.3, the image of ξ in $H^q(G_0, M)$ will vanish if restrict to a finite index subgroup of G_0 , which is also a finite index subgroup of G. By Lemma 2.3, G is good.

Assume G is good. For any finite G_0 -module M, $\operatorname{Ind}_{G_0}^G M$ is also finite. Then $H^q(G_0, M) = H^q(G, \operatorname{Ind}_{G_0}^G M) \simeq H^q(\widehat{G}, \operatorname{Ind}_{G_0}^G M) = H^q(\widehat{G}_0, M)$. Thus G_0 is also good.

Lemma 2.5. If G is a good group and E is an extension of G by a group N such that N is finite, then there exists a subgroup E_0 of E of finite index such that $E_0 \cap N = \{e\}$, where e is the identity element.

Proof Let I be the centralizer of N in E. Consider the morphism of groups $E \rightarrow Aut(N)$ given by conjugation of elements of E on N. We see the kernel is I. Since N is finite, I has finite index in E. Then $I/(I \cap N)$ is isomorphic to a finite index subgroup of G. By Lemma 2.4, $I/(I \cap N)$ is good. The exact sequence

$$0 \to I \cap N \to I \to I/(I \cap N) \to 0$$

is a central extension of $I/(I \cap N)$ by *I*. Classes of central extensions are classified by the cohomology group

$$H^2(I/(I \cap N), I \cap N).$$

Since $I/(I \cap N)$ is good, by Lemma 2.3, the extension above splits when restricted to a finite index subgroup of $I/(I \cap N)$, which, by the splitness, gives out a finite index subgroup E_0 of I such that $E_0 \cap N = \{e\}$. Moreover, E_0 is also a finite index subgroup of E.

Lemma 2.6. If N is a finitely generated group and E is an extension of a group G by N. Assume G is good, then any finite index subgroup of N contains a finite subgroup of the form $N \cap E_0$, where E_0 is a finite index subgroup of E. Hence we have an exact sequence of

$$0 \to \widehat{N} \to \widehat{E} \to \widehat{G} \to 0.$$

Proof Assume N_0 is a finite index subgroup of N. Replace N by $\bigcap_{g \in N/N_0} gNg^{-1}$, we can assume N_0 is normal in N. Since N is finitely generated, the number of (normal) subgroups of N with fixed index is finite. (Assume index n is fixed. A normal subgroup N' of index n gives out a morphism $N \to S_n$ by the action of N on the cosets N/N', where S_n is the n-th symmetric group. N' is the kernel of the morphism. Since N is finitely generated, the number of morphism from N to S_n is finite.) Thus the set $\{gN_0g^{-1}|g \in E\}$ is finite and $\bigcap_{g \in E}gN_0g^{-1}$ is a normal subgroup of E which has finite index in N. Hence we can assume N_0 is normal in E. Apply Lemma 2.5 to extension

$$0 \rightarrow N/N_0 \rightarrow E/N_0 \rightarrow G \rightarrow 0$$

we can find a finite index subgroup E'_0 of E/N_0 such that $E'_0 \cap (N/N_0) = \{e\}$. Now let E_0 be the pre-image of E'_0 in E. Then $E_0 \cap N = N_0$.

Lemma 2.7. If N is a finitely generated group and E is an extension of a group G by N. Assume G, N is good and $H^q(N, M)$ is finite for any finite N-module M and $q \ge 0$. Then E is also good.

Proof Since we have exact sequences

$$0 \to N \to E \to G \to 0$$
$$0 \to \widehat{N} \to \widehat{E} \to \widehat{G} \to 0.$$

we have associated (Hoschild-Serre) spectral sequences, for any finite E-module M,

$$\begin{split} E_2^{pq} &= H^p(\widehat{G}, H^q(\widehat{N}, M)) \qquad \Rightarrow \quad H^{p+q}(\widehat{E}, M) \\ & \downarrow \qquad \qquad \qquad \downarrow \\ E_2^{pq} &= H^p(G, H^q(N, M)) \qquad \Rightarrow \quad H^{p+q}(E, M) \end{split}$$

By assumptions, the E_2 terms of the two spectral sequences are isomorphic. Hence the two spectral sequences are isomorphic and $H^q(\widehat{E}, M) \simeq H^q(E, M)$ for any M, q. Thus E is good.

Proof of Proposition 2.2 By the lemma above, we only need to show that a free group of finite type is good and its cohomology groups of finite modules are finite. Let G be

a free group of finite type. We know that a finite group has cohomological dimension 1. (We have a free resolution of trivial G-module \mathbb{Z} :

$$0 \to I_G \to \mathbb{Z}[G] \xrightarrow{g \to 1} \mathbb{Z} \to 0_g$$

where I_G is the free $\mathbb{Z}[G]$ -module generated by $g_i - 1, i = 1, \dots, s$, where (g_1, \dots, g_s) is a choice of free generators of G) Let M be a finite G-module. If $q = 0, H^0(\widehat{G}, M) = H^0(G, M) = M^G$ is finite. If q = 1, the morphism $H^1(\widehat{G}, M) \to H^1(G, M)$ is in fact an isomophism for any G (even G is not free) and finite module M. If G_0 is a normal finite index subgroup of G, we have a well-known exact sequence (from the Hoschild-Serre spectral sequence)

$$0 \to H^1(G/G_0, M) \to H^1(G, M) \to \cdots$$

We get an injectivity $H^1(\widehat{G}, M) \hookrightarrow H^1(G, M)$. Now we prove surjectivity. $H^1(G, M)$ are just classes of cross homomorphisms: $f: G \to M, f(gh) = gf(h) + f(g)$. If $f \in Z^1(G, M)$, let $K = \{g | f(g) = 0\}$. Then K is a subgroup of G and it has finite index $(f(gh) = f(g) \text{ if and only if } h \in K, \text{ so } f: G/K \hookrightarrow M)$. Let K_0 be a finite index subgroup of K which is normal in G and take $L = K_0 \cap G_0$, where G_0 is the normal subgroup of elements of G which act trivially on M. Then f comes from an element of $Z^1(G/L, M^L)$. Hence f lies in the image of $H^1(\widehat{G}, M)$. Since f is arbitrary, $H^1(\widehat{G}, M) \to H^1(G, M)$ is surjective. Now G is finitely generated and free, a cross morphism is determined by its value on generators of G, so there are only a finite number of cross morphisms. Hence H^1 is finite. If $q \ge 2$, $H^q(G, M) = 0$ for any finite module M. The condition (2) in Lemma 2.3 is satisfied for G. Hence G is good and $H^q(\widehat{G}, M) = H^q(G, M) = 0$ if $q \ge 2$.

Remark 2.8. The Stalling-Swan theorem asserts that a finitely generated group has cohomological dimension 1 if and only if it is free.

Remark 2.9. The comparisons we have studied are comparisons of cohomology with respect to different topoi. For example, in algebraic setting, let X be a connected, quasi-compact and quasi-separated scheme and let $X_{f\acute{e}t}$ be the topos corresponding to finite étale covers of X. Let x be a geometric point of X and $\pi_1(X, x)$ be the étale fundamental group. The classifying topos $B\pi_1(X, x)$ is the category of continuous $\pi_1(X, x)$ -sets. Then we have an equivalence of topoi $X_{f\acute{e}t} \simeq B\pi_1(X, x)$ and for any sheaf of abelian group F over $X_{f\acute{e}t}$, $H^q(B\pi_1(X, x), F_x) \simeq H^q(X_{f\acute{e}t}, F)$ for any q. See [2] and Chapter 2 of [1]

References

- Piotr Achinger. K(pi, 1) spaces in algebraic geometry. http://achinger. impan.pl/thesis.pdf (visited on 2019-04-22).
- [2] Piotr Achinger. A theorem of m. artin. MathOverflow. http:// mathoverflow.net/questions/275876/a-theorem-of-m-artin (visited on 2019-04-22).

- [3] N Bourbaki, M Artin, A Grothendieck, P Deligne, and JL Verdier. *Theorie des Topos et Cohomologie Etale des Schemas. Seminaire de Geometrie Algebrique du Bois-Marie 1963-1964 (SGA 4)*, volume 3. Springer, 2006.
- [4] Jean-Pierre Serre. Galois cohomology. Springer Science & Business Media, 2013.