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These are the notes of the talk I gave on 25 March. The aim was to prove Chevalley’s theorem
on constructible sets in the affine case using the machinery of absolute flatness. Most of section 1
introduces standard material regarding absolutely flat rings, and can be found (mostly as exercises)
in chapters I and II of [Bou06]. Section 2 gives a brief overview of the constructible topology on a
scheme, summarising the results explained in much greater generality in §9 of [Gro61]. Section 3 is
essentially the proof of Chevalley’s theorem, following quite closely the one given in [Oli78].

1 Absolute flatness
1.1 Absolutely flat rings
Definition 1.1. A ring A is absolutely flat if every A-module is flat.

Proposition 1.1. Let A be a ring. The following are equivalent:

1. A is absolutely flat.

2. For all a ∈ A, (a2) = (a).

3. For all a ∈ A there is a unique x ∈ A such that xax = x and axa = a.

4. A is reduced and SpecA is Hausdorff.

5. A is reduced and dimA = 0.

6. For all p ∈ SpecA, the local ring Ap is a field.

We will denote by a(−1) the element x of 2., and by ea the idempotent aa(−1). The set of elements
of A which have a weak inverse in A will be denoted by A(×).

Proof.1⇒ 2 Take an element a ∈ A and consider the exact sequence :

0 −→ (a) −→ A −→ A/(a) −→ 0

Since A is absolutely flat, A/(a) is flat, and after applying ⊗AA/(a) to this sequence we get:

0 −→ (a)/(a2) −→ A/(a) −→ A/(a) −→ 0

The arrow on the right is just the identity of A/(a), so (a)/(a2) = 0 and (a) = (a2).

2⇒ 3 From 2., we know that there is a y ∈ A such that a = a2y. One can easily check that x := yay
verifies xax = x and axa = a. Why is it unique ? Suppose there is a z ∈ A satisfying the same
conditions. Set e = ax, f = az. Then

(a) = (e) = (f)

and since e and f are idempotents generating the same ideal, they are equal, thus

(1− e+ a)(1− e+ x) = (1− e+ a)(1− e+ z) = 1

and by unicity of the inverse of 1− e+ a, we have x = z.
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3⇒ 4 First, A is reduced because if an = 0 then an−1 = aa(−1) = 0, so a = 0. Now take p 6= q ∈
SpecA, so there is e.g. f ∈ p \ q. Then there is an idempotent e = ff (−1) such that (f) = (e),
so p ∈ V (e) = D(1− e) and q ∈ D(e).

4⇒ 5 If p ( q ∈ SpecA then q ∈ V (p) = {p} so they can’t be separated by two open sets.

5⇒ 6 Since dimA = 0, the only prime ideal contained in p is p, and so the only prime ideal of Ap

is pAp. But A is reduced, so is Ap is as well and the intersection of its prime ideals is (0):
pAp = (0), so Ap is a field.

6⇒ 1 An A-module M is flat iff every Mp is flat over Ap. This is true because Ap is a field.

Corollary 1.1. • Fields are absolutely flat.

• Any domain that is not a field is not absolutely flat, because it is at least one-dimensional.

• Any quotient or localisation of an absolutely flat ring is absolutely flat. Any product of
absolutely flat rings is absolutely flat.

• If A is absolutely flat, then SpecA is compact and totally disconnected.

1.2 Construction of a universal absolutely flat ring
Consider a ring A and a subset S ⊆ A. One would like to construct an A-algebra φS : A→ S(−1)A
in which every element of S has a weak inverse, i.e. φS(S) ⊆ (S(−1)A)(×). Mimicking localisation,
this ring should satisfy the following universal property: for every ring homomorphism f : A → B
such that f(S) ⊆ B(×), there is a unique f̄ : S(−1)A→ B such that f = f̄ ◦ φS .

A B

S(−1)A

φS

f

∃!f̄

Note that this universal property immediately implies that S(−1)A is unique up to unique iso-
morphism, and that A → S(−1)A is an epimorphism. In order to see what the ring S(−1)A looks
like, let’s start with the simple case where S = {s}, s ∈ A.

Proposition 1.2. s(−1)A ' As ×A/s.

Proof. Let f : A→ B be a ring homomorphism such that f(s) ∈ B(×). Then e = f(s)f(s)(−1) is an
idempotent, and

B ' B/e×B/(1− e).

Notice that f(s) is zero in B/e, and invertible in B/(1 − e). Hence there are unique morphisms
φ : A/s→ B/e, ψ : As → B/(1− e) compatible with f , and the morphism

f̄ = (φ, ψ) : A/s×As → B = B/e×B/(1− e)

extends f , and is the only one possible.

Example 1.1. For an integer n, n(−1)Z = Z
[ 1
n

]
× Z/n.

In general, one can define S(−1)A by simply giving a weak inverse to every element of s.

Proposition 1.3. S(−1)A ' A [Ts|s ∈ S] / (sTss− s, TssTs − Ts|s ∈ S).

Proof. We simply check that this construction satisfies the universal property of S(−1)A. Consider a
morphism f : A→ B such that every s ∈ S has a weak inverse. Then the only possibility of defining
f̄ is to set f̄(Ts) = f(s)(−1), and this obviously works.
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Proposition 1.4. The map ψS : SpecS(−1)A→ SpecA is bijective.

Proof. We already know that φS : A → S(−1)A is an epimorphism, so ψS is a monomorphism
of schemes: it is injective. Let us now prove that every p ∈ SpecA has a preimage. Denote by
k(p) the residue field of A at p. Since k(p)(×) = k(p), the universal property of S(−1)A gives us
ᾱ : S(−1)A→ k(p).

A k(p)

S(−1)A

φS

α

ᾱ

Now by definition of α, we have
p = kerα = φ−1

S (kerβ)

and since k(p) is a field, kerβ is a prime ideal of S(−1)A, and ψS(kerβ) = p.

Definition 1.2. The ring A(−1)A will be denoted by T (A): it is called the universal absolutely flat
ring associated with A. When X is the scheme SpecA, the scheme SpecT (A) will be denoted by
Xcons.

While it is clear that every element of A has a weak inverse in T (A), we don’t know yet whether
every element of T (A) does. This matter will be settled by the following proposition.

Proposition 1.5. The ring T (A) is absolutely flat.

Proof. We are going to prove that for every prime ideal p of T (A), the local ring T (A)p is a field.
More precisely, Ap is the fraction field of φ(A) in T (A)p, where φ : A→ T (A)→ T (A)p.

φ(A) is a domain First, let us note that T (A)p is local, hence connected: its only idempotents
are 0 and 1. Now if a, b ∈ A are such that

φ(a)φ(b) = 0

we may multiply by the weak inverses of φ(a) and φ(b) to get:

eφ(a)eφ(b) = 0.

Since eφ(a) and eφ(b) are idempotents, one of them must be 0, so φ(a) = eφ(a)φ(a) = 0 or φ(b) =
eφ(b)φ(b) = 0.

T (A)p contains the fraction field K of φ(A) For every element a ∈ A, since eφ(a) = φ(a)φ(a)(−1)

is idempotent, it is either 0 or 1. In the first case, φ(a) = eφ(a)φ(a) = 0; in the latter, φ(a) is
invertible.

T (A)p = K Since A→ T (a) is an epimorphism, A→ T (A)p is one as well, and so is the map K →
T (a)p. But a ring epimorphism from a field to a ring is always an isomorphism, so T (a)p = K.

1.3 Absolutely flat schemes
There is a global notion of absolute flatness, defined by the local property satisfied by absolutely
flat rings.

Definition 1.3. A scheme X is absolutely flat if at every point x ∈ X, the local ring OX,x is a
field.

Remark 1.1. Unsurprisingly, this means that an affine scheme X = SpecA is absolutely flat if and
only if A is absolutely flat.
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Proposition 1.6. Let X be a scheme. If X is absolutely flat, then the ring of global sections
Γ(X,OX) is absolutely flat.

Proof. We are going to prove that, given f ∈ A := Γ(X,OX), f2 divides f . For every x ∈ X, the
set Xf := {x ∈ X|f(x) 6= 0} is clopen. It is obviously open, and is also closed because if x 6∈ Xf ,
f(x) is invertible in OX,x because OX,x is a field, and so one can find an inverse of f in some open
neighbourhood of x. This implies that the map:

A −→ Γ(Xf ,OX)× Γ(X \Xf ,OX)

is an isomorphism. By definition of Xf , f is invertible in Γ(Xf ,OX), so there is a g ∈ A such that
gf2 = f on Xf . Now since f = 0 on X \Xf , the equality

f = gf2

holds in A.

Proposition 1.7. Let X be an absolutely flat scheme. The following are equivalent:

1. X is affine.

2. X is coherent.

3. X is compact and totally disconnected.

Proof. We already know that when X is affine, it is coherent, compact and totally disconnected.
We will not use this result, the rest of the proof can be found in [Fer03].

2 The constructible topology
2.1 Constructible sets
Definition 2.1. A subset U of a topological space X is retro-compact if the inclusion map U ↪→ X
is quasi-compact.

Definition 2.2. A constructible subset of a topological space X is a finite union of sets of the
form U ∩ V c, where U and V are retro-compact open sets of X.

Remark 2.1. In some particular cases, constructible subsets can be described in a simpler way.

• If X is quasi-compact, then retro-compact is the same as quasi-compact.

• If X is a coherent (qcqs) scheme, the constructible subsets of X are exactly the quasi-compact
sets of X.

• If X is a noetherian scheme, the constructible subsets of X are simply the finite unions of
locally closed subsets of X.

Proposition 2.1. Finite unions, finite intersections and complements of constructible sets are con-
structible sets are constructible.

Definition 2.3. The constructible topology on a topological space X is the topology generated
by constructible subsets of X.
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2.2 The topology of Xcons

Let A be a ring, and X = SpecA. We will now study the topology of Xcons = SpecT (A). Consider
φ : Xcons → X. For I ⊆ A, we will denote by DA(I) and VA(I) the sets φ−1(D(I)) and φ−1(V (I))
respectively.

Proposition 2.2. Xcons is compact.

Proof. Since T (A) is absolutely flat, Xcons is Hausdorff. Moreover, it is an affine scheme, so it is
quasi-compact.

Proposition 2.3. For all a ∈ A, the sets VA(a) and DA(a) are clopen in Xcons = SpecT (A).

Proof. Let e = aa(−1) be the idempotent associated with a in the absolutely flat ring T (A). Then
VA(a) = V (e) = D(1− e) is open and closed in Xcons.

Corollary 2.1. For every finitely generated ideal J ⊆ A and every f ∈ A, the set VA(J) ∩DA(f)
is clopen in Xcons.

The following lemma will help us characterise the topology of Xcons.

Lemma 2.1. Let τ, τ ′ be two topologies on a set X such that τ ′ is coarser than τ . If τ ′ is Hausdorff
and τ is compact, then τ = τ ′.

Proof. Consider the identity map i : (X, τ)→ (X, τ ′). It is continuous because τ ′ ⊆ τ . We want to
show that every closed set for τ is also closed for τ ′. Let C ⊆ X be a closed subset for the topology
τ . Then since τ is compact, C is compact, so by continuity of i, C is compact for the Hausdorff
topology τ ′, hence it is closed for τ ′.

Proposition 2.4. The topology of Xcons is generated by sets of the form VA(J) ∩ DA(f), where
J ⊆ A is a finitely generated ideal and f ∈ A.

Proof. The second topology is Hausdorff because if p 6= q ∈ SpecT (A), then p ∈ V (f) and q ∈ D(f).
It is coarser than the topology of Xcons because the sets of the form VA(J) ∩ DA(f) are open in
Xcons. Hence according the previous lemma, the two topologies are equal.

Proposition 2.5. The constructible topology on X = SpecA is the Zariski topology of Xcons.

Proof. The proof is the same as the last one: the constructible topology is Hausdorff and coarser
than the topology of Xcons. Indeed, since X is affine, a constructible set C is a finite union of
Ui ∩ V ci where Ui, Vi are quasi-compact: we can write Ui = DA(a1) ∪ · · · ∪ DA(ar) and Vi =
(DA(b1)∪· · ·∪DA(bs))c = VA(b1, . . . , bs). Now C is a finite union of sets of the form VA(J)∩DA(f),
and it is open in Xcons.

Proposition 2.6. A subset of X = SpecA is constructible if and only if it is clopen in Xcons.

Proof. As stated in the previous proof, a constructible subset of X is a finite union of VA(J)∩DA(f),
so it is clopen in Xcons. Conversely, a clopen set C of Xcons is a union of finite intersections of
VA(Jij) ∩DA(fij). Since Xcons it compact and C is closed in Xcons, C is compact and this union
can be chosen to be finite, so C is constructible in X.

3 A proof of Chevalley’s theorem
In this section, we are going to prove an affine version of Chevalley’s theorem. The general statement
and the reduction to the affine case can be found in chapter 10 of [Wed10].

Theorem 3.1. Let f : X → Y be a morphism of finite presentation between affine schemes. Then
f(X) is constructible in Y .

Proof. Write X = SpecB, Y = SpecA, B = A[t1, . . . , tn]/J where J is finitely generated.
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Reduction step 1 Since X = V (J) ⊆ AnY is closed hence constructible, it is enough to prove that
the image of a constructible subset of AnY in Y = SpecA is constructible. If we prove it when n = 1,
the result follows by induction.

Reduction step 2 As proved in 2.6, a constructible subset of A1
Y is a union of sets of the form

V (J) ∩D(f), where J ⊆ A[t] is finitely generated and f ∈ A[t]. Hence it suffices to prove that the
image of the set C := D(f) ∩ V (J) = Spec(A[t]/J)f in Y is constructible.

Reduction to the absolutely flat case Suppose that we have proved this in the case where A
is absolutely flat. Consider the scheme Y cons = SpecT (A). We know that (T (A)[t]/JT (A)[t])f is
absolutely flat. Let us call D its spectrum. We have the following commutative diagram, arising
from the base change Y cons → Y :

D C

Y cons Y

s

u

r

φ

We want to prove that r(C) is constructible in Y . Since φ is surjective, u is as well, so

r(C) = φ(s(D)).

By our assumption, s(D) is constructible in Y cons because T (A) is absolutely flat, so it is clopen in
Y cons and φ(s(D)) is constructible in Y . Hence r(C) is constructible in Y .

Proof in the absolutely flat case We may now assume that A is absolutely flat. It suffices to
show that for any f ∈ A[t]/J where J ⊆ A[t] is finitely generated, the image of D(f) ⊆ V (J) in
Y = SpecA is constructible. We are going to prove the following three facts, which will allow us to
conclude the proof.

1. Let I ⊆ A[t] be a finitely generated ideal. There exist orthogonal idempotents e1, . . . , er ∈ A
such that for every i, (I + eiA)/eiA is either 0 or generated by a monic g ∈ A[T ].

2. The image of D(f) ⊆ A1
Y in Y is open.

3. For all f ∈ A[t]/g with g monic, D(f) = SpecA[t]/(g, e) for some e ∈ A[t].

The first point implies that, using the Chinese remainder theorem, we can write

A[t]/J =
r⊕
i=1

(A/ei)[t]/ ((J + eiA)/eiA)

and so V (J) is the disjoint union of the spectra of these quotient rings. Since SpecA/ei is clopen
in Y , it suffices to show that the image of each of these spectra in SpecA/ei is open. The ring A
being absolutely flat, A/ei is as well, so we may replace A/ei by A and it will be enough to prove
that the image of SpecA[t]/J , with J = 0 or J = (monic g), is open in SpecA.

The second point deals with the case J = 0, and the third point with the case J = (g). Indeed,
the third point tells us that D(f) is actually SpecA[t]/I with I finitely generated. Using the first
fact, we know that its image in Y is open.

Proof of 1. For every x ∈ Y , the ideal I ⊗ k(x) of k(x)[t] (where k(x) is the residue field of Y
at x) is either zero or generated by some monic polynomial f . If we write I = (a1 . . . an), we have
s1 . . . sn defined on some open neighbourhoods Ui of x such that ai = fsi, so on Ux = ∩Ui, the
ideal I ⊗ OY (Ux) is generated by f (or zero). Since A is absolutely flat, we can refine Ux to be
V (ex) where ex is an idempotent. Now Y is the union of all Ux, and this union can be chosen to be
finite because Y is compact. It can even be made into a disjoint union: if V (e) and V (f) intersect,
simply replace f with f(1 − e). Now we have Y =

∐
V (ei) for some idempotents e1 . . . es, with

I ⊗A/ei = (I + eiA)/eiA being zero or generated by a monic polynomial.
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Proof of 2. We proceed by induction on deg f .
• If deg f = 0, f ∈ A so the image of D(f) in Y is the open set DA(f).
• Induction step: call a the leading coefficient of f . If a is invertible, the image of D(f) in Y is Y .
If not, the image is the union of D(a) ⊆ Y and of the image in SpecA/a = V (a) of D(f̄), where f̄
is the class of f in (A/a)[t]. Since deg f̄ < deg f , D(f̄) is open in V (a), which itself is open in Y
because A is absolutely flat.

Proof of 3. Setting B := A[t]/g, we know that B is integral over A. Thus dimB 6 dimA, so
dimB = 0 because A is absolutely flat. This means that Bred := B/nilradB is zero-dimensional
and reduced, hence absolutely flat. For f ∈ B, consider its class f̄ in Bred. There is an idempotent
ē ∈ Bred such that

D(f̄) = V (ē) = D(1− ē) ⊆ SpecBred.

Thus in B, the elements f − (1− e) and e(1− e) are nilpotent, so

D(f) = D(1− e) = V (e).
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