
École polytechnique 2012-2013
Théorie de Galois

Feuille d’exercices 5

Soient k un corps parfait et Ω une clôture algébrique de k. On rappelle qu’une sous-extension finieK/k
de Ω est galoisienne si pour chaque x ∈ K, tous les k-conjugués de x dans Ω appartiennent à K. D’après
un résultat du cours, il est équivalent de demander que l’inclusion naturelle Homk(K,K) ⊂ Homk(K,Ω)
soit une égalité, de sorte que |Homk(K,K)| = [K : k]. Le groupe Gal(K/k) = Homk(K,K) est appelé
groupe de Galois deK/k. Si x ∈ K, les k-conjugués de x sont alors permutés transitivement par Gal(K/k).

Si P ∈ k[X], on note RP l’ensemble de ses racines dans Ω et Gal(P, k) le groupe de Galois de l’extension
galoisienne k(RP ) sur k.

Exercice 1. Soient K1 ⊂ Ω et K2 ⊂ Ω des extensions galoisiennes de k. Montrer que K1 ∩K2 et K1K2 sont aussi
galoisiens sur k.

Exercice 2. Soit K une extension galoisienne de k et soient k ⊆ L ⊆ K, k ⊆ F ⊆ K des sous-extensions de K.
Montrer que Gal(K/LF ) = Gal(K/L)∩Gal(K/F ) et que Gal(K/L∩F ) est le sous-groupe de Gal(K/k)
engendré par Gal(K/L) et Gal(K/F ).

Que peut-on en conclure si Gal(K/L) ∩Gal(K/F ) = 1 ?

Exercice 3. Soit K un extension galoisienne de k et soit k ⊆ F ⊆ K une sous-extension de K. Notons L la plus
petite sous-extension normale de K contenant L . Montrer que

Gal(K/L) =
⋂

σ∈Gal(K/k)

σGal(K/F )σ−1.

Exercice 4. Soit P ∈ k[X] un polynôme irréductible de degré n et soit G = Gal(P, k).
(i) Rappeler pourquoi |RP | = n.
(ii) En déduire que n divise |G| et que |G| divise n!.

Exercice 5. Soit g ∈ Q[X] le polynôme cubique unitaire dont les racines réelles sont x1 = 2 cos(2π/7), x2 =
2 cos(4π/7) et x3 = 2 cos(6π/7).

(i) Vérifier que g = X3 +X2 − 2X − 1.
(ii) Montrer que g est irréductible.
(iii) Montrer que Q(x1) est un corps de décomposition de g.
(iv) En déduire Gal(g).
(v) Indiquer une méthode pour calculer le discriminant de g, ∆ =

∏
i<j(xi − xj)2.

Exercice 6. Soient f = X4 − 4X2 − 1 ∈ Q[X] et g = Y 2 − 4Y − 1 ∈ Q[Y ].
(i) Pourquoi le groupe Gal(g,Q) est-il un quotient de G = Gal(f,Q) ?
(ii) Montrer que G est un sous-groupe de SRf

compatible avec la partition

{{
√

2 +
√

5,−
√

2 +
√

5}, {
√

2−
√

5,−
√

2−
√

5}}

de Rf . (On dit qu’une permutation σ d’un ensemble fini E est compatible avec une partition de E lorsque
x ∼ y implique σ(x) ∼ σ(y) pour ∼ la relation d’équivalence dont les classes sont la partition considérée.)

(iii) En déduire que G est contenu dans le groupe diédral du carré.
(iv) Montrer qu’il existe un élément σ ∈ G tel que σ(

√
2 +
√

5) est égal à
√

2−
√

5 ou −
√

2−
√

5.

(v) Montrer qu’il existe un élément τ ∈ G échangeant
√

2−
√

5 et −
√

2−
√

5 mais fixant
√

2 +
√

5.
(vi) En déduire que G est le groupe diédral tout entier.

Exercice 7. Soit K une extension galoisienne de k et P ∈ k[X] un polynôme unitaire irréductible. Soient Q,R ∈
K[X] des facteurs unitaires irréductibles de P . Montrer qu’il existe σ ∈ Gal(K/k) tel que Q = σ(P ) (on
étend l’action de σ à K[X] de façon évidente).
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Exercice 8. Soit f = Xd + a1X
d−1 + · · ·+ ad ∈ K[X] un polynôme (unitaire, de degré d) séparable à coefficients

dans un corps K, et ξ1, . . . , ξd ses racines dans un corps de décomposition noté L (de sorte que f =∏d
i=1(X − ξi)). On définit la résolvante de Kronecker de f comme

R =
∏
σ∈Sd

(
X −

d∑
i=1

Yiξσ(i)

)
∈ L[X,Y1, . . . , Yd]

(i). Montrer que le polynôme R est, en fait, à coefficients dans K, et il est invariant par Sd agissant
par permutation sur les variables Y1, . . . , Yd.

(ii). Soit h un facteur irréductible quelconque de R dans K[X,Y1, . . . , Yd], choisi unitaire comme poly-
nôme en X ; et soit Sh le sous-groupe de Sd formé des permutations σ ∈ Sd (permutant les Yi) qui
laissent h invariant. Montrer que Sh est de cardinal degX(h) et conjugué, dans Sd, au groupe de
Galois G = Gal(L/K) de f sur K vu comme un groupe de permutations sur {ξi}. ( Indication : on
pourra montrer que si (X −

∑
i Yiξi) est un facteur de h sur L, alors h =

∏
g∈G

(
X −

∑
i Yig(ξi)

)
.)

(iii). Soit f = X3 +X2 − 2X − 1 (cf. exercice 3). On admet que

R =
(
X3 + (Y1 + Y2 + Y3)X2

+
(
− 2(Y 2

1 + Y 2
2 + Y 2

3 ) + 3(Y1Y2 + Y2Y3 + Y3Y1)
)
X

+
(
− (Y 3

1 + Y 3
2 + Y 3

3 )− 3(Y 2
1 Y2 + Y 2

2 Y3 + Y 1
3 Y1)

+4(Y1Y
2
2 + Y2Y

2
3 + Y3Y

2
1 ) + Y1Y2Y3

))
·
(
X3 + (Y1 + Y2 + Y3)X2

+
(
− 2(Y 2

1 + Y 2
2 + Y 2

3 ) + 3(Y1Y2 + Y2Y3 + Y3Y1)
)
X

+
(
− (Y 3

1 + Y 3
2 + Y 3

3 ) + 4(Y 2
1 Y2 + Y 2

2 Y3 + Y 1
3 Y1)

−3(Y1Y
2
2 + Y2Y

2
3 + Y3Y

2
1 ) + Y1Y2Y3

))
Que peut on en déduire sur le groupe de Galois de f sur Q ?

(iv). On considère à nouveau le cas général. Montrer que le discriminant de R (par rapport à la va-
riable X) est un polynôme non nul dans K[Y1, . . . , Yd].

Exercice 9. Soit p premier et soient σ, τ respectivement une transposition et un p-cycle dans Sp. On note G ⊆ Sp

le sous-groupe engendré par τ et σ. Sans perte de généralité on pourra supposer que τ = (1, 2 · · · , p) et
σ = (i, i+ l) avec 1 ≤ i < i+ l ≤ p. Dans la suite, on considérera tous les entiers modulo p.

(i) Montrer que (i+ l, i+ 2l) appartient à G, puis qu’il en est de même pour (i, i+ 2l).
(ii) Montrer que (i, i+ kl) ∈ G pour tout k ∈ N.
(iii) En déduire que G = Sp.

Exercice 10. Soient P = X5 − 4X + 2 ∈ Q[X] et G = Gal(P,Q).
(i) Vérifier que P est irréductible sur Q.
(ii) Montrer que P a exactement trois racines réelles. En déduire que G, vu comme groupe de permu-

tations des racines de P dans C, contient une transposition.
(iii) Montrer que G contient un 5-cycle.
(iv) Montrer que G = S5. (On pourra utiliser l’exercice précédent.)
(v) Modulo 257, P se décompose sous la forme P = (X + 91) (X − 53) (X − 31) (X2 − 7X − 118).

Indiquer une méthode pour montrer que le dernier facteur est irréductible. (On verra plus tard que cela
force G à contenir une transposition.)

Exercice 11. Soit k un corps parfait et Ω une clôture algébrique de k. On dit que k est quasi-fini si pour tout
entier n > 0 il existe exactement une extension de k de degré n dans Ω.

(i). Soit G un groupe fini ayant la propriété suivante : pour tout diviseur d de |G| il existe au plus
un sous-groupe de G de cardinal d. Montrer que pour tout diviseur d de |G| il existe au plus φ(d)
éléments de G d’ordre d.

(ii). En utilisant la formule
∑
d|n φ(d) = n montrer que G est cyclique.

(iii). En conclure que toute extension finie d’un corps quasi-fini est galoisienne cyclique.
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