Ecole polytechnique 2012-2013
Théorie de Galois

Feuille d’exercices 5

Soient k un corps parfait et {2 une cloture algébrique de k. On rappelle qu’une sous-extension finie K /k
de Q est galoisienne si pour chaque = € K, tous les k-conjugués de x dans ) appartiennent & K. D’aprés
un résultat du cours, il est équivalent de demander que I'inclusion naturelle Homy, (K, K') C Homy (K, Q)
soit une égalité, de sorte que |Homy (K, K)| = [K : k|. Le groupe Gal(K/k) = Homy (K, K) est appelé
groupe de Galois de K/k. Six € K, les k-conjugués de x sont alors permutés transitivement par Gal(K/k).

Si P € k[X], on note Rp I’ensemble de ses racines dans € et Gal(P, k) le groupe de Galois de I'extension
galoisienne k(Rp) sur k.

Exercice 1. Soient K7 C et Ko C Q des extensions galoisiennes de k. Montrer que K; N Ky et Ky K5 sont aussi
galoisiens sur k.

Exercice 2. Soit K une extension galoisienne de k et soient k C L C K,k C F C K des sous-extensions de K.
Montrer que Gal(K/LF) = Gal(K/L) N Gal(K/F) et que Gal(K/LNF) est le sous-groupe de Gal(K/k)
engendré par Gal(K/L) et Gal(K/F).

Que peut-on en conclure si Gal(K/L) N Gal(K/F) =17

Exercice 3. Soit K un extension galoisienne de k et soit £k C F' C K une sous-extension de K. Notons L la plus
petite sous-extension normale de K contenant L . Montrer que

Gal(K/L)= (| oGal(K/F)o .
oeGal(K/k)
Exercice 4. Soit P € k[X] un polynome irréductible de degré n et soit G = Gal(P, k).
(i) Rappeler pourquoi |Rp| = n.
(ii) En déduire que n divise |G| et que |G| divise n!.

Exercice 5. Soit g € Q[X] le polynéme cubique unitaire dont les racines réelles sont x; = 2cos(27/7), o =
2cos(4m/7) et w3 = 2 cos(6m/7).
(i) Verifier que g = X3 + X? —2X — 1.

(ii) Montrer que g est irréductible.
(iii) Montrer que Q(z1) est un corps de décomposition de g.
(iv) En déduire Gal(g).
(v) Indiquer une méthode pour calculer le discriminant de g, A = [],_;(zi — x;)*.
Exercice 6. Soient f = X* —4X%2 -1€Q[X]et g=Y? —4Y — 1€ Q[Y].
(i) Pourquoi le groupe Gal(g, Q) est-il un quotient de G = Gal(f, Q) ?

(ii) Montrer que G est un sous-groupe de &r, compatible avec la partition

{{\/2+\f,—\/2+\/3},{\/2—\f,—\/2—\/5}}

de Ry. (On dit qu'une permutation o d’un ensemble fini E est compatible avec une partition de E lorsque
x ~ y implique o(x) ~ o(y) pour ~ la relation d’équivalence dont les classes sont la partition considérée.)

iii) En déduire que G est contenu dans le groupe diédral du carré.

iv) Montrer qu'’il existe un élément o € G tel que o(v/2 4+ v/5) est égal 4 v/2 — /5 ou —v/2 — /5.
v) Montrer qu'il existe un élément 7 € G échangeant /2 — v/5 et —v/2 — /5 mais fixant /2 + /5.
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(vi) En déduire que G est le groupe diédral tout entier.

Exercice 7. Soit K une extension galoisienne de k et P € k[X] un polynome unitaire irréductible. Soient @, R €
K[X] des facteurs unitaires irréductibles de P. Montrer qu'il existe o € Gal(K/k) tel que @ = o(P) (on
étend Paction de o & K[X] de fagon évidente).



Exercice 8. Soit f = X%+ a; X9 1 + ... + a4 € K[X] un polynéme (unitaire, de degré d) séparable a coefficients
dans un corps K, et &,...,&y ses racines dans un corps de décomposition noté L (de sorte que f =
H?ZI(X —¢&;)). On définit la résolvante de Kronecker de f comme

d
R=T[ (X =Y Vitow) € LIX, Vi, .. Vil
=1

ceS,
(i). Montrer que le polynoéme R est, en fait, a coeflicients dans K, et il est invariant par &, agissant
par permutation sur les variables Y7,...,Y}.

(ii). Soit h un facteur irréductible quelconque de R dans K[X,Y7,...,Yy], choisi unitaire comme poly-
nome en X ; et soit Sy, le sous-groupe de &, formé des permutations o € &4 (permutant les Y;) qui
laissent h invariant. Montrer que Sy, est de cardinal degy (h) et conjugué, dans &4, au groupe de
Galois G = Gal(L/K) de f sur K vu comme un groupe de permutations sur {{;}. (Indication : on
pourra montrer que si (X — 37, Y;§;) est un facteur de b sur L, alors h =[] ¢ (X =X, Y9(%)).)

(iii). Soit f = X3 + X2 —2X — 1 (¢f. exercice 3). On admet que

R=(X*+ (1 + Y2 +13)X?
+(—2(Y2+YZ +Y3) +3(Y1Ys + YaV3 + Y3Y7)) X
+( = (VP + Y3 +YP) = 3(YPYe + Y73 + Y3'Y9)
+A(Y1YZ + Yo Y2 + Y3YE) + YlYng))
(X34 (1 + Yo+ 15) X
+(—2(Y2+YZ +Y3) +3(Y1Ys + YaV3 + Y3Y7)) X
(= (VP +YP +YP) +4(YPYe + V7Y + YY)
,3(Y1Y22 4 YQY’SQ + Y3Y12) + Yl}/éYg))

Que peut on en déduire sur le groupe de Galois de f sur Q7

(iv). On considére a nouveau le cas général. Montrer que le discriminant de R (par rapport a la va-
riable X) est un polynéme non nul dans K[Yy,...,Yy].

Exercice 9. Soit p premier et soient o, T respectivement une transposition et un p-cycle dans &,. On note G C 6,
le sous-groupe engendré par 7 et o. Sans perte de généralité on pourra supposer que 7 = (1,2 ,p) et
o= (i,i+1) avec 1 <7< i+ <p. Dans la suite, on considérera tous les entiers modulo p.

(i) Montrer que (i + [, + 21) appartient a G, puis qu’il en est de méme pour (i, + 21).
(if) Montrer que (4,7 + kl) € G pour tout k € N.
(iii) En déduire que G = &,,.

Exercice 10. Soient P = X° —4X +2 € Q[X] et G = Gal(P, Q).
(i) Vérifier que P est irréductible sur Q.

(ii) Montrer que P a exactement trois racines réelles. En déduire que G, vu comme groupe de permu-
tations des racines de P dans C, contient une transposition.

(iii) Montrer que G contient un 5-cycle.
(iv) Montrer que G = G5. (On pourra utiliser ’exercice précédent.)

(v) Modulo 257, P se décompose sous la forme P = (X + 91) (X — 53) (X — 31) (X? — 7X — 118).
Indiquer une méthode pour montrer que le dernier facteur est irréductible. (On verra plus tard que cela
force G a contenir une transposition.)

Exercice 11. Soit £ un corps parfait et €2 une cloture algébrique de k. On dit que k est quasi-fini si pour tout
entier n > 0 il existe exactement une extension de k de degré n dans €.

(i). Soit G un groupe fini ayant la propriété suivante : pour tout diviseur d de |G| il existe au plus
un sous-groupe de G de cardinal d. Montrer que pour tout diviseur d de |G| il existe au plus ¢(d)
éléments de G d’ordre d.

(ii). En utilisant la formule },, ¢(d) = n montrer que G est cyclique.

(iii). En conclure que toute extension finie d’un corps quasi-fini est galoisienne cyclique.



