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Théorie de Galois

Feuille d’exercices 7

Exercice 1. (i) Montrer que le polynôme 1 +X +X2 +X3 +X4 ∈ F2[X] n’a pas de racine dans F4, puis
qu’il est irréductible.

(ii) Montrer qu’un 4-cycle et un 3-cycle engendrent S4.
(iii) Déterminer le groupe de Galois sur Q du polynôme X4 +X3 −X2 +X − 1.

Exercice 2. (i) Soit d ≥ 2 un entier et p ≥ d − 2 un nombre premier différent de 2 et 3. Montrer qu’il
existe un polynôme f ∈ Z[X] unitaire de degré d tel que :

- la réduction modulo 2 de f soit irréductible dans F2[X],
- la réduction modulo 3 de f soit de la forme XQ(X) où Q(X) ∈ F3[X] est irréductible,
- la réduction modulo p de f ait un facteur irréductible de degré 2 et d− 2 racines distinctes

dans Fp.
(ii) Montrer que le groupe de Galois sur Q de f est isomorphe au groupe symétrique Sd.

Exercice 3. (i) Soit P = p1p2 · · · pr un produit de nombres premiers distincts. Soit f ∈ Z/P [X] un
polynôme unitaire et fi ∈ Fpi [X] sa réduction modulo pi (1 ≤ i ≤ r). Montrer que f est
réductible si et seulement si chaque fi l’est.

(ii) Soient p ≥ 3 un nombre premier et d ≥ 1 un entier. Montrer que de la proportion des
polynômes à coefficients dans Fp irréductibles unitaires de degré d est au moins égale à 1

2d .
(iii) En déduire que quand N tend vers +∞, la proportion des polynômes f unitaires de

degré d à coefficients entiers dans [−N,N ] qui sont réductibles tend vers 0. (Indication : on
pourra commencer par montrer que pour chaque ε > 0, il existe P comme ci-dessus tel que le
nombre polynômes réductibles unitaires de Z/P [X] de degré d soit au plus εP d puis considérer
N ≥ P et le cardinal des fibres de la projection f 7→ f mod P .)

En combinant les techniques des deux exercices précédents, on peut montrer que « la plu-
part » des polynômes unitaires de degré d ont pour groupe de Galois Sd (cf. Die Seltenheit
der Gleichungen mit Affekt, van der Waerden, 1933).

Exercice 4. Soit k un corps parfait et P = X3 + aX + b ∈ k[X] un polynôme irréductible dont on note
α1, α2, α3 les racines dans un corps de décomposition K de P . On rappelle que le discriminant
δ(P ) de P est

(∏
i<j(αi − αj)

)2. (On peut vérifier, cf. exercice 2, qu’il est égal à −4a3 − 27b2.)
(i) Supposons que δ(P ) soit un carré dans k. Que peut-on dire du groupe de Galois de P ?
(ii) Soit f ∈ k[Z1, Z2, Z3] = Z1Z

2
2 + Z2Z

2
3 + Z3Z

2
1 . Montrer qu’une permutation σ ∈ S3 est

paire si et seulement si σ(f) = f . (On fait agir S3 par permutation des variables.)
(iii) Montrer que Rf (P ) =

∏
σ∈S3/A3

(T − σ(f)(α1, α2, α3)) appartient à k[T ] et l’exprimer
en fonction de a et b.

(iv) En déduire que si k est de caractéristique 2, le groupe de Galois de P est contenu dans A3

ou S3 selon que 1 + a3b−2 est de la forme x2 + x (x ∈ k) ou pas.
Exercice 5. Soit n ≥ 2 un entier. Montrer que le discriminant ∆(f) du polynôme Xn + aX + b est

(−1)
n(n−1)

2
(
nnbn−1 + (1− n)n−1an

)
.

(Indication : on pourra montrer que ∆(f) = (−1)
n(n−1)

2
∏
i f
′(xi), où les xi sont les racines

de f , et utiliser la formule
∏
i(uxi + v) =

∑
i u

iσi(x1, . . . , xn)vn−i où les σj sont les fonctions
symétriques élémentaires.)
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Exercice 6. On admet que les sous-groupes transitifs de S7 sont, à conjugaison près, représentés par le
schéma suivant :

S7

A7

G168

C7 o C6

C7 o C3

D7

C7

où :
– G168 (d’ordre 168) est le groupe GL3(F2) ; il agit sur les 7 droites et est abstraitement

isomorphe à PSL2(F7) ;
– C7 oC6 (d’ordre 42) est le groupe AGL(F7) des fonctions affines x 7→ ax+ b sur F7 (avec
a ∈ F×7 et b ∈ F7) ;

– C7oC3 (d’ordre 21) est le groupe des fonctions affines de la forme x 7→ ax+ b sur F7 avec
a ∈ {1, 2, 4} (et b ∈ F7) ;

– le D7 = C7 o C2 (d’ordre 14) le groupe diédral de l’heptagone, qui est aussi le groupe des
fonctions affines de la forme x 7→ ax+ b sur F7 avec a ∈ {1,−1} (et b ∈ F7) ;

– C7 (d’ordre 7) est le groupe cyclique.

(i) Soit f = X7 − 7X + 3 ∈ Z[X] dont on note x0, . . . , x6 les racines dans un corps de
décomposition K sur Q. Montrer que f est irréductible.

(ii) On admet que f a exactement trois racines dans F107. Que peut-on en déduire sur le
groupe de Galois G de f ?

(iii) Montrer que le polynôme de degré 35

g(T ) =
∏
i<j<k

(T − (xi + xj + xk))

appartient àQ[X] et est séparable. (Indication : pour le second point, on pourra utiliser l’existence
d’un 7-cycle dans le groupe de Galois G de f et le fait que le polynôme cyclotomique Φ7(Z) =
1 + Z + · · ·+ Z6 est irréductible.)

(iv) Montrer que G168 agit 2-fois transitivement mais pas 3-fois transitivement sur les droites
de F3

2. Montrer que A7 agit 3-fois transitivement sur {1, . . . , 7}.
(v) On admet que g est divisible par le polynôme T 7 + 14T 4 − 42T 2 − 21T + 9. En déduire

que le groupe de Galois G n’est ni le groupe alterné A7 ni S7. Conclure.
Exercice 7. Soit K une extension finie de R, on veut montrer que K est égal à R ou isomorphe à C

(théorème de d’Alembert-Gauß).
(i) Montrer que si K/R est de degré 2, alors K ' C.
(ii) Montrer que si K/R est de degré impair, alors K = R.
(iii) Montrer que C n’admet pas d’extension de degré 2.
(iv) Supposons K/R galoisienne finie. Montrer l’existence d’une tour d’extensions

R ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kn = K

telle que [K1 : R] est impair et, pour i = 1, . . . , n − 1, [Ki+1 : Ki] = 2. (On pourra utiliser le
théorème de Sylow : « si |G| = pαm avec p premier et (p,m) = 1 alors G contient un sous-groupe
d’ordre pα ».)

(v) Conclure.
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