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Exercice 1. Soit p un nombre premier impair.

(i). Montrer que le discriminant de Xp − 1 est (−1)
p−1
2 pp.

(ii). En déduire que Q(

√
(−1)

p−1
2 p) ⊆ Q(ζp).

(iii). En déduire que toute extension quadratique de Q se plonge dans une extension cycloto-
mique.

Exercice 2. (Théorème de Kummer, suivant Lagrange) Soit K/k une extension galoisienne de groupe
de Galois cyclique d’ordre n, dont on note σ un générateur. On suppose que l’ensemble µ des
racines n-ièmes de l’unité dans k est de cardinal n. Pour chaque x ∈ K et chaque ζ ∈ µ, on note
(ζ, x) :=

∑
0≤i<n ζ

iσi(x) (résolvante de Lagrange).

(i). Calculer σ
(
(ζ, x)

)
.

(ii). En déduire que (ζ, x)n appartient à k.
(iii). Soient ξ une racine primitive n-ième de l’unité et x ∈ K tels que α := (ξ, x) soit non nul.

Montrer que K = k(α).
(iv). Pour chaque x ∈ K, calculer

∑
ζ∈µ(ζ, x).

(v). En déduire, lorsque n est premier, l’existence d’un ξ et d’un x comme en (iii).
(vi). Quid si n n’est pas premier ?

Exercice 3. Soit k un corps de caractéristique p > 0 et σ l’automorphisme de k[Z0, . . . , Zp−1] qui laisse
invariant les coefficients et permute cycliquement les variables : σ(Zi) = Zi+1 (mod p). On pose

A =

p−1∑
i=0

iZi, et a =

p−1∑
i=0

Zi.

(i). Calculer σ(A) et en déduire que Ap −Aap−1 est invariant par σ.
(ii). En s’inspirant de l’exercice précédent, montrer que si K/k est une extension cyclique de

degré p, il existe un élément α ∈ k tel que K = k[X]/(Xp −X − α).

Exercice 4. cos(2π/17)
Soit ω = e2πi/17, et G le groupe de Galois de l’extension Q(ω)/Q. Le groupe (Z/17Z)× étant

engendré par 3, notons σ ∈ G l’automorphisme ω 7→ ω3 et, pour 0 ≤ i ≤ 4, notons σi = σ2
i .

Ainsi, Gi = 〈σi〉 est l’unique sous-groupe d’indice 2i de G. On note Q = E0 ⊂ E1 ⊂ E2 ⊂ E3 ⊂
E4 = Q(ω) les sous-corps fixes correspondants.

(i). Pour 0 ≤ i < 4, on pose βi =
∑

0≤j<24−i

(−1)jσji (ω), c’est-à-dire :

β0 = ω−ω3+ω9−ω10+ω13−ω5+ω15−ω11+ω16−ω14+ω8−ω7+ω4−ω12+ω2−ω6 ;
β1 = ω − ω9 + ω13 − ω15 + ω16 − ω8 + ω4 − ω2 ; β2 = ω − ω13 + ω16 − ω4, et β3 = ω − ω16.
Montrer que Ei+1 = Ei(βi).

(ii). Comment vérifier que β0 =
√
17 ? Comparer avec l’exercice 1 ou avec l’exercice 3 de la

feuille 8 (sommes de Gauß).

(iii). Comment montrer que β1 =
√

17
2 −

1
2

√
17 ?

(iv). En observant que 1
2(ω + ω16) = − 1

16 + 1
16β0 + 1

8β1 + 1
4β2, expliquer comment trouver

l’expression

cos
2π

17
= − 1

16
+

1

16

√
17 +

1

8

√
17

2
− 1

2

√
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+
1

4
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3
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Exercice 5. (Une équation quintique résoluble) Soit f = X5 − 5X + 12 ∈ Q[X], dont on note x0, . . . , x4
les racines dans C et G le groupe de Galois sur Q.

(i). On admet que : X5−5X+12 est irréductible dans F2011[X] et que le discriminant est 21256.
Que peut-on dire du groupe de Galois de f ?

(ii). On admet de plus que l’on a la factorisation suivante en polynômes irréductibles :∏
0≤i<j<5

(T − (xi + xj)) = (T 5 − 5T 3 − 10T 2 + 30T − 36)(T 5 + 5T 3 + 10T 2 + 10T + 4).

En déduire que l’équation f = 0 est résoluble par radicaux. (Indication : on pourra faire
agir G sur un pentagone régulier et numéroter les racines de sorte que xi = ci(x0), où c est
un 5-cycle dans G.)

(iii). Soit z la classe de X dans le corps de rupture K = Q[X]/(f) de f . Montrer que le
stabilisateur H d’une racine de f est isomorphe au groupe de Galois de f sur Q(z).

(iv). Expliquer comment utiliser l’égalité f = (X − z)
(
X2 + 1

4(−z
4 − z3 − z2 + 3z + 4)X +

1
4(−z

4 − z3 − z2 − 5z + 8)
)(
X2 + 1

4(z
4 + z3 + z2 + z − 4)X + 1

2(−z
3 − z − 2)

)
pour donner

une seconde démonstration du fait que le groupe de Galois de f est de cardinal divisant 10
donc résoluble.

(v). Montrer que G est le groupe diédral du pentagone. (Indication : on pourra réduire modulo
un bon nombre premier ou bien « modulo l’infini ».)

(vi). Soit Y =
∑

i∈Z/5XiX
2
i+1 ∈ Q[Xi, i ∈ Z/5]. Montrer que le polynôme multivarié Y est

invariant par l’action du groupe cyclique Z/5 mais pas par τ : i 7→ −i (c’est-à-dire pas par
le groupe diédral).

(vii). En déduire que y = x0x
2
1 + x1x

2
2 + · · ·+ x4x

2
0 est de degré au plus 2 sur Q. On admet que

y + τ(y) = −10 et yτ(y) = 275. En déduire que Q(y) = Q(
√
−10).

(viii). Expliquer comment, en considérant une racine primitive 5-ième de l’unité

ζ =
1

4
(−1 +

√
5 +

√
−10− 2

√
5)

et les résolvantes de Lagrange rj = x0 + ζjx1 + ζ2jx2 + · · · + ζ4jx4, pour 0 ≤ j < 5, de
l’exercice 2, on pourrait montrer que l’expression suivante est une racine de f .
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Exercice 6. (Trisection de l’angle) On dira que ϑ ∈ R est un angle constructible si le point eiϑ est
constructible à la règle et au compas.

(i). Montrer que si ϑ est un angle constructible alors ϑ/2 l’est aussi.

(ii). Montrer que si ϑ angle constructible il n’en est pas nécessairement de même de l’angle ϑ/3.
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